COVID-2019 Alert

Information about the 2019 Novel Coronavirus. Read the latest >

Información sobre el coronavirus 2019 (COVID-19). Aprenda más >


Christopher Severyn, MD

  • Christopher John Severyn

Work and Education

Professional Education

Oregon Health and Sciences University Registrar, Portland, OR, 06/03/2013


Duke University Medical Center Pediatrics Residency Program, Durham, NC, 06/30/2016


Stanford University Pediatric Hematology Oncology Fellowship, Palo Alto, CA, 07/06/2020

Board Certifications

Pediatrics, American Board of Pediatrics

All Publications

GUT DECONTAMINATION ALTERS THE INTESTINAL MICROBIOTA DURING ALLOGENIC BONE MARROW TRANSPLANT Severyn, C., London, W., Kao, P., Silverstein, S., Li, M., Verrill, K., Ritz, J., Bhatt, A., Whangbo, J. WILEY. 2020: S11S12
Longitudinal Changes in the Intestinal Microbiome Composition Following Gut Decontamination in Pediatric Allogeneic Hematopoietic Stem Cell Transplant Patients: A Pilot Study Severyn, C., London, W. B., Kao, P., Silverstein, S., Li, M., Kim, S., Verrill, K., Ritz, J., Bhatt, A. S., Whangbo, J. AMER SOC HEMATOLOGY. 2019
Reduction in Mortality after Umbilical Cord Blood Transplantation in Children Over a 20-Year Period (1995-2014) BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION Spees, L. P., Martin, P. L., Kurtzberg, J., Stokhuyzen, A., McGill, L., Prasad, V. K., Driscoll, T. A., Parikh, S. H., Paget, K. M., Vinesett, R., Severyn, C., Sung, A. D., Proia, A. D., Jenkins, K., Arshad, M., Steinbach, W. J., Seed, P. C., Kelly, M. S. 2019; 25 (4): 75663
Gut Colonization Preceding Mucosal Barrier Injury Bloodstream Infection in Pediatric Hematopoietic Stem Cell Transplant Recipients. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation Kelly, M. S., Ward, D. V., Severyn, C. J., Arshad, M. n., Heston, S. M., Jenkins, K. n., Martin, P. L., McGill, L. n., Stokhuyzen, A. n., Bhattarai, S. K., Bucci, V. n., Seed, P. C. 2019


The gastrointestinal tract is the predicted reservoir for most bloodstream infections (BSIs) after hematopoietic stem cell transplantation (HSCT). Whole-genome sequencing and comparative genomics have the potential to improve our understanding of the dynamics of gut colonization that precede BSI in HSCT recipients.Within a prospective cohort study of children (<18 years) undergoing HSCT, 9 subjects met criteria for mucosal barrier injury BSI. We performed whole-genome sequencing of the blood culture isolate and weekly fecal samples preceding the BSI to compare the genetic similarity of BSI isolates to fecal strains. We evaluated temporal associations between antibiotic exposures and the abundances of BSI strains in the gut microbiota and correlated detection of antibiotic resistance genes with the phenotypic antibiotic resistance of these strains.Median age was 2.6 years, and 78% were male. BSIs were caused by Escherichia coli (n=5), Enterococcus faecium (n=2), Enterobacter cloacae (n=1), and Rothia mucilaginosa (n=1). In the 6 BSI episodes with evaluable comparative genomics, the fecal strains were identical to the blood culture isolate (>99.99% genetic similarity). Gut domination by these strains preceded only 4 of 7 E. coli or E. faecium BSIs by a median (range) of 17 (6-21) days. Increasing abundances of the resulting BSI strains in the gut microbiota were frequently associated with specific antibiotic exposures. E. cloacae and R. mucilaginosa were not highly abundant in fecal samples preceding BSIs caused by these species. The detection of antibiotic resistance genes for beta-lactam antibiotics and vancomycin predicted phenotypic resistance in BSI strains.Bacterial strains causing mucosal barrier injury BSI in pediatric HSCT recipients were observed in the gut microbiota prior to BSI onset, and changes in the abundances of these strains within the gut preceded most BSI episodes. However, frequent sampling of the gut microbiota and sampling of other ecological niches is likely to be necessary to effectively predict BSI in HSCT recipients.

View details for DOI 10.1016/j.bbmt.2019.07.019

View details for PubMedID 31326608

Microbiota modification in hematology: still at the bench or ready for the bedside? Blood advances Severyn, C. J., Brewster, R. n., Andermann, T. M. 2019; 3 (21): 346172


Growing evidence suggests that human microbiota likely influence diverse processes including hematopoiesis, chemotherapy metabolism, and efficacy, as well as overall survival in patients with hematologic malignancies and other cancers. Both host genetic susceptibility and host-microbiota interactions may impact cancer risk and response to treatment; however, microbiota have the potential to be uniquely modifiable and accessible targets for treatment. Here, we focus on strategies to modify microbiota composition and function in patients with cancer. First, we evaluate the use of fecal microbiota transplant to restore microbial equilibrium following perturbation by antibiotics and chemotherapy, and as a treatment of complications of hematopoietic stem cell transplantation (HSCT), such as graft-versus-host disease and colonization with multidrug-resistant organisms. We then address the potential use of both probiotics and dietary prebiotic compounds in targeted modulation of the microbiota intended to improve outcomes in hematologic diseases. With each type of therapy, we highlight the role that abnormal, or dysbiotic, microbiota play in disease, treatment efficacy, and toxicity and evaluate their potential promise as emerging strategies for microbiota manipulation in patients with hematologic malignancies and in those undergoing HSCT.

View details for DOI 10.1182/bloodadvances.2019000365

View details for PubMedID 31714965

In Translation: With probiotics, resistance is not always futile Cell Host & Microbe Severyn, C. J., Bhatt, A. S. 2018; 24: 334-336
Conserved proximal promoter elements control repulsive guidance molecule c/hemojuvelin (Hfe2) gene transcription in skeletal muscle GENOMICS Severyn, C. J., Rotwein, P. 2010; 96 (6): 342-351


Repulsive guidance molecule c (RGMc; gene symbol: Hfe2) plays a critical role in iron metabolism. Inactivating mutations cause juvenile hemochromatosis, a severe iron overload disorder. Understanding mechanisms controlling RGMc biosynthesis has been hampered by minimal information about the RGMc gene. Here we define the structure, examine the evolution, and establish mechanisms of regulation of the mouse RGMc gene. RGMc is a 4-exon gene that undergoes alternative RNA splicing to yield 3 mRNAs with 5' different untranslated regions. Gene transcription is induced during myoblast differentiation, producing all 3 mRNAs. We identify 3 critical promoter elements responsible for transcriptional activation in skeletal muscle, comprising paired E-boxes, a putative Stat and/or Ets element, and a MEF2 site, and muscle transcription factors myogenin and MEF2C stimulate RGMc promoter function in non-muscle cells. As these elements are conserved in RGMc genes from multiple species, our results suggest that RGMc has been a muscle-enriched gene throughout its evolutionary history.

View details for DOI 10.1016/j.ygeno.2010.09.001

View details for PubMedID 20858542

Regulation and evolutionary origins of repulsive guidance molecule C / hemojuvelin expression : a muscle-enriched gene involved in iron metabolism Severyn, C. J. Oregon Health & Science University (Dissertation). Portland, OR. 2010


RGMs (repulsive guidance molecules) comprise a recently discovered family of GPI (glycosylphosphatidylinositol)-linked cell-membrane-associated proteins found in most vertebrate species. The three proteins, RGMa, RGMb and RGMc, products of distinct single-copy genes that arose early in vertebrate evolution, are approximately 40-50% identical to each other in primary amino acid sequence, and share similarities in predicted protein domains and overall structure, as inferred by ab initio molecular modelling; yet the respective proteins appear to undergo distinct biosynthetic and processing steps, whose regulation has not been characterized to date. Each RGM also displays a discrete tissue-specific pattern of gene and protein expression, and each is proposed to have unique biological functions, ranging from axonal guidance during development (RGMa) to regulation of systemic iron metabolism (RGMc). All three RGM proteins appear capable of binding selected BMPs (bone morphogenetic proteins), and interactions with BMPs mediate at least some of the biological effects of RGMc on iron metabolism, but to date no role for BMPs has been defined in the actions of RGMa or RGMb. RGMa and RGMc have been shown to bind to the transmembrane protein neogenin, which acts as a critical receptor to mediate the biological effects of RGMa on repulsive axonal guidance and on neuronal survival, but its role in the actions of RGMc remains to be elucidated. Similarly, the full spectrum of biological functions of the three RGMs has not been completely characterized yet, and will remain an active topic of ongoing investigation.

View details for DOI 10.1042/BJ20090978

View details for PubMedID 19698085

Molecular biology, genetics and biochemistry of the repulsive guidance molecule family BIOCHEMICAL JOURNAL Severyn, C. J., Shinde, U., Rotwein, P. 2009; 422: 393-403