Rm H3589 MC 5640
Stanford, CA 94305
Columbia University, New York, NY, 1995
Columbia University College of Physicians and Surgeons, New York, NY, 1996
UCSF Medical Center, San Francisco, CA, 1999
Stanford University Medical Center, Stanford, CA, 2001
Stanford University Medical Center, Stanford, CA, 2002
Anesthesia, American Board of Anesthesiology
Pediatric Anesthesia, American Board of Anesthesiology
Perioperative Transesophageal Echocardiography, National Board of Echocardiography
We present a detailed report of an awake craniotomy for recurrent third ventricular colloid cyst in a patient with severe pulmonary arterial hypertension in the setting of Eisenmenger syndrome, performed 6 weeks after we managed the same patient for a more conservative procedure. This patient has a high risk of perioperative mortality and may be particularly susceptible to perioperative hemodynamic changes or fluid shifts. The risks of general anesthesia induction and emergence must be balanced against the risks inherent in an awake craniotomy on a per case basis.
View details for PubMedID 29708913
We present a detailed report of an awake craniotomy for recurrent third ventricular colloid cyst in a patient with severe pulmonary arterial hypertension in the setting of Eisenmenger syndrome, performed 6 weeks after we managed the same patient for a more conservative procedure. This patient has a high risk of perioperative mortality and may be particularly susceptible to perioperative hemodynamic changes or fluid shifts. The risks of general anesthesia induction and emergence must be balanced against the risks inherent in an awake craniotomy on a per case basis.
View details for DOI 10.1213/XAA.0000000000000664
View details for PubMedID 29135526
View details for DOI 10.1038/jp.2014.88
View details for DOI 10.1053/j.jvca.2012.01.004
View details for PubMedID 22361483
Respiratory motion degrades MRI exams. Adequate detection of respiratory motion with pneumatic respiratory belts in small children is challenging and time-consuming.
View details for DOI 10.1007/s00247-010-1755-y
View details for Web of Science ID 000281907100014
View details for PubMedID 20567966
View details for PubMedCentralID PMC3004967
Dexmedetomidine (DEX) is an alpha2-adrenergic agonist that is approved by the Food and Drug Administration for short-term (<24 h) sedation in adults. It is not approved for use in children. Nevertheless, the use of DEX for sedation and anesthesia in infants and children appears to be increasing. There are some concerns regarding the hemodynamic effects of the drug, including bradycardia, hypertension, and hypotension. No data regarding the effects of DEX on the cardiac conduction system are available. We therefore aimed to characterize the effects of DEX on cardiac conduction in pediatric patients.Twelve children between the ages of 5 and 17 yr undergoing electrophysiology study and ablation of supraventricular accessory pathways had hemodynamic and cardiac electrophysiologic variables measured before and during administration of DEX (1 microg/kg IV over 10 min followed by a 10-min continuous infusion of 0.7 microg x kg(-1) x h(-1)).Heart rate decreased while arterial blood pressure increased significantly after DEX administration. Sinus node function was significantly affected, as evidenced by an increase in sinus cycle length and sinus node recovery time. Atrioventricular nodal function was also depressed, as evidenced by Wenckeback cycle length prolongation and prolongation of PR interval.DEX significantly depressed sinus and atrioventricular nodal function in pediatric patients. Heart rate decreased and arterial blood pressure increased during administration of DEX. The use of DEX may not be desirable during electrophysiology study and may be associated with adverse effects in patients at risk for bradycardia or atrioventricular nodal block.
View details for DOI 10.1213/01.ane.0000297421.92857.4e
View details for PubMedID 18165557