nutch_noindex
CANCEL
COVID-2019 Alert

Information about the 2019 Novel Coronavirus. Read the latest >

Información sobre el coronavirus 2019 (COVID-19). Aprenda más >

/nutch_noindex

Thomas Montine, MD

  • No Image

Specialties

Neuropathology

Work and Education

Professional Education

McGill University Faculty of Medicine, Montreal, Canada, 5/28/1991

Internship

Duke University Medical Center, Durham, NC, 6/30/1992

Residency

Duke University Hospital, Durham, NC, 6/30/1994

Duke University Hospital, Durham, NC, 6/30/1995

Fellowship

Vanderbilt University Pediatric Anesthesiology Fellowship, Nashville, TN, 6/30/1996

Board Certifications

Anatomic Pathology, American Board of Pathology

Neuropathology, American Board of Pathology

All Publications

Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell Parker, K. R., Migliorini, D., Perkey, E., Yost, K. E., Bhaduri, A., Bagga, P., Haris, M., Wilson, N. E., Liu, F., Gabunia, K., Scholler, J., Montine, T. J., Bhoj, V. G., Reddy, R., Mohan, S., Maillard, I., Kriegstein, A. R., June, C. H., Chang, H. Y., Posey, A. D., Satpathy, A. T. 2020

Abstract

CD19-directed immunotherapies are clinically effective for treating B cell malignancies but also cause a high incidence of neurotoxicity. A subset of patients treated with chimeric antigen receptor (CAR) Tcells or bispecific Tcell engager (BiTE) antibodies display severe neurotoxicity, including fatal cerebral edema associated with Tcell infiltration into the brain. Here, we report that mural cells, which surround the endothelium and are critical for blood-brain-barrier integrity, express CD19. We identify CD19 expression in brain mural cells using single-cell RNA sequencing data and confirm perivascular staining at the protein level. CD19 expression in the brain begins early in development alongside the emergence of mural cell lineages and persists throughout adulthood across brain regions. Mouse mural cells demonstrate lower levels of Cd19 expression, suggesting limitations in preclinical animal models of neurotoxicity. These data suggest an on-target mechanism for neurotoxicity in CD19-directed therapies and highlight the utility of human single-cell atlases for designing immunotherapies.

View details for DOI 10.1016/j.cell.2020.08.022

View details for PubMedID 32961131

Hallucinations and Development of Dementia in Parkinson's Disease. Journal of Parkinson's disease Gryc, W., Roberts, K. A., Zabetian, C. P., Weintraub, D., Trojanowski, J. Q., Quinn, J. F., Hiller, A. L., Chung, K. A., Poston, K. L., Yang, L., Hu, S., Edwards, K. L., Montine, T. J., Cholerton, B. A. 2020

Abstract

Neuropsychiatric symptoms are common in Parkinson's disease (PD). We investigated the relationship between neuropsychiatric symptoms and current and future diagnosis of PD dementia (PDD). Individuals with PD who had a study partner were enrolled (n=696). Study partners were administered the Neuropsychiatric Inventory or Neuropsychiatric Inventory Questionnaire at baseline. Participants were assigned a cognitive diagnosis at baseline and follow up visits. Hallucinations were significantly associated with a diagnosis of PDD cross-sectionally (p<0.001) and with shortened time to dementia longitudinally among initially nondemented participants (n=444; p=0.005). Screening for hallucinations may be useful for assessing risk of dementia in participants with PD.

View details for DOI 10.3233/JPD-202116

View details for PubMedID 32741842

Comparison of regional flortaucipir PET with quantitative tau immunohistochemistry in three subjects with Alzheimer's disease pathology: a clinicopathological study. EJNMMI research Pontecorvo, M. J., Keene, C. D., Beach, T. G., Montine, T. J., Arora, A. K., Devous, M. D., Navitsky, M., Kennedy, I., Joshi, A. D., Lu, M., Serrano, G. E., Sue, L. I., Intorcia, A. J., Rose, S. E., Wilson, A., Hellstern, L., Coleman, N., Flitter, M., Aldea, P., Fleisher, A. S., Mintun, M. A., Siderowf, A. 2020; 10 (1): 65

Abstract

BACKGROUND: The objective of this study was to make a quantitative comparison of flortaucipir PET retention with pathological tau and beta-amyloid across a range of brain regions at autopsy.METHODS: Patients with dementia (two with clinical diagnosis of AD, one undetermined), nearing the end of life, underwent 20-min PET, beginning 80min after an injection of ~370 mBq flortaucipir [18F]. Neocortical, basal ganglia, and limbic tissue samples were obtained bilaterally from 19 regions at autopsy and subject-specific PET regions of interest corresponding to the 19 sampled target tissue regions in each hemisphere were hand drawn on the PET images. SUVr values were calculated for each region using a cerebellar reference region. Abnormally phosphorylated tau (Ptau) and amyloid-beta (Abeta) tissue concentrations were measured for each tissue region with an antibody capture assay (Histelide) using AT8 and H31L21 antibodies respectively.RESULTS: The imaging-to-autopsy interval ranged from 4-29days. All three subjects had intermediate to high levels of AD neuropathologic change at autopsy. Mean cortical SUVr averaged across all three subjects correlated significantly with the Ptau immunoassay (Pearson r = 0.81; p < 0.0001). When Ptau and Abeta1-42 were both included in the model, the Ptau correlation with flortaucipir SUVr was preserved but there was no correlation of Abeta1-42 with flortaucipir. There was also a modest correlation between limbic (hippocampal/entorhinal and amygdala) flortaucipir SUVr and Ptau (Pearson r = 0.52; p < 0.080). There was no significant correlation between SUVr and Ptau in basal ganglia.CONCLUSIONS: The results of this pilot study support a quantitative relationship between cortical flortaucipir SUVr values and quantitative measures of Ptau at autopsy. Additional research including more cases is needed to confirm the generalizability of these results. Trial registration, NIH Clinicaltrials.gov NCT # 02516046. Registered August 27, 2015. https://clinicaltrials.gov/ct2/show/NCT02516046?term=02516046&draw=2&rank=1.

View details for DOI 10.1186/s13550-020-00653-x

View details for PubMedID 32542468

Positron Emission Tomography Imaging With [18F]flortaucipir and Postmortem Assessment of Alzheimer Disease Neuropathologic Changes. JAMA neurology Fleisher, A. S., Pontecorvo, M. J., Devous, M. D., Lu, M., Arora, A. K., Truocchio, S. P., Aldea, P., Flitter, M., Locascio, T., Devine, M., Siderowf, A., Beach, T. G., Montine, T. J., Serrano, G. E., Curtis, C., Perrin, A., Salloway, S., Daniel, M., Wellman, C., Joshi, A. D., Irwin, D. J., Lowe, V. J., Seeley, W. W., Ikonomovic, M. D., Masdeu, J. C., Kennedy, I., Harris, T., Navitsky, M., Southekal, S., Mintun, M. A., A16 Study Investigators 2020

Abstract

Importance: Positron emission tomography (PET) may increase the diagnostic accuracy and confirm the underlying neuropathologic changes of Alzheimer disease (AD).Objective: To determine the accuracy of antemortem [18F]flortaucipir PET images for predicting the presence of AD-type tau pathology at autopsy.Design, Setting, and Participants: This diagnostic study (A16 primary cohort) was conducted from October 2015 to June 2018 at 28 study sites (27 in US sites and 1 in Australia). Individuals with a terminal illness who were older than 50 years and had a projected life expectancy of less than 6 months were enrolled. All participants underwent [18F]flortaucipir PET imaging, and scans were interpreted by 5 independent nuclear medicine physicians or radiologists. Supplemental autopsy [18F]flortaucipir images and pathological samples were also collected from 16 historically collected cases. A second study (FR01 validation study) was conducted from March 26 to April 26, 2019, in which 5 new readers assessed the original PET images for comparison to autopsy.Main Outcomes and Measures: [18F]flortaucipir PET images were visually assessed and compared with immunohistochemical tau pathology. An AD tau pattern of flortaucipir retention was assessed for correspondence with a postmortem B3-level (Braak stage V or VI) pathological pattern of tau accumulation and to the presence of amyloid-beta plaques sufficient to meet the criteria for high levels of AD neuropathological change. Success was defined as having at least 3 of the 5 readers above the lower bounds of the 95% CI for both sensitivity and specificity of 50% or greater.Results: A total of 156 patients were enrolled in the A16 study and underwent [18F]flortaucipir PET imaging. Of these, 73 died during the study, and valid autopsies were performed for 67 of these patients. Three autopsies were evaluated as test cases and removed from the primary cohort (n=64). Of the 64 primary cohort patients, 34 (53%) were women and 62 (97%) were white; mean (SD) age was 82.5 (9.6) years; and 49 (77%) had dementia, 1 (2%) had mild cognitive impairment, and 14 (22%) had normal cognition. Prespecified success criteria were met for the A16 primary cohort. The flortaucipir PET scans predicted a B3 level of tau pathology, with sensitivity ranging from 92.3% (95% CI, 79.7%-97.3%) to 100.0% (95% CI, 91.0%-100.0%) and specificity ranging from 52.0% (95% CI, 33.5%-70.0%) to 92.0% (95% CI, 75.0%-97.8%). A high level of AD neuropathological change was predicted with sensitivity of 94.7% (95% CI, 82.7%-98.5%) to 100.0% (95% CI, 90.8%-100.0%) and specificity of 50.0% (95% CI, 32.1%-67.9%) to 92.3% (95% CI, 75.9%-97.9%). The FR01 validation study also met prespecified success criteria. Addition of the supplemental autopsy data set and 3 test cases, which comprised a total of 82 patients and autopsies for both the A16 and FR01 studies, resulted in improved specificity and comparable overall accuracy. Among the 156 enrolled participants, 14 (9%) experienced at least 1 treatment-emergent adverse event.Conclusions and Relevance: This study's findings suggest that PET imaging with [18F]flortaucipir could be used to identify the density and distribution of AD-type tau pathology and the presence of high levels of AD neuropathological change, supporting a neuropathological diagnosis of AD.

View details for DOI 10.1001/jamaneurol.2020.0528

View details for PubMedID 32338734

APOE epsilon 4-related differences in visuospatial impairment in female Parkinson's Disease patients Rawls, A., Yang, L., Chung, K., Hiller, A., Espay, A., Revilla, F., Devoto, J., Goldman, J., Stebbins, G., Bernard, B., Wszolek, Z., Ross, O., Dickson, D., Rosenthal, L., Dawson, T., Albert, M., Factor, S., Weintraub, D., Trojanowski, J., Van Deerlin, V., Simuni, T., Lubbe, S., Mencacci, N., Hu, S., Leverenz, J., Quinn, J., Montine, T., Zabetian, C., Poston, K., Cholerton, B. LIPPINCOTT WILLIAMS & WILKINS. 2020
Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature medicine Johnson, E. C., Dammer, E. B., Duong, D. M., Ping, L., Zhou, M., Yin, L., Higginbotham, L. A., Guajardo, A., White, B., Troncoso, J. C., Thambisetty, M., Montine, T. J., Lee, E. B., Trojanowski, J. Q., Beach, T. G., Reiman, E. M., Haroutunian, V., Wang, M., Schadt, E., Zhang, B., Dickson, D. W., Ertekin-Taner, N., Golde, T. E., Petyuk, V. A., De Jager, P. L., Bennett, D. A., Wingo, T. S., Rangaraju, S., Hajjar, I., Shulman, J. M., Lah, J. J., Levey, A. I., Seyfried, N. T. 2020

Abstract

Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment. This module was enriched in AD genetic risk factors and in microglia and astrocyte protein markers associated with an anti-inflammatory state, suggesting that the biological functions it represents serve a protective role in AD. Proteins from this module were elevated in cerebrospinal fluid in early stages of the disease. In this study of >2,000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify proteins and biological processes in AD brains that may serve as therapeutic targets and fluid biomarkers for the disease.

View details for DOI 10.1038/s41591-020-0815-6

View details for PubMedID 32284590

Participant and Study Partner Reported Impact of Cognition on Functional Activities in Parkinson's Disease MOVEMENT DISORDERS CLINICAL PRACTICE Cholerton, B., Poston, K. L., Tian, L., Quinn, J. F., Chung, K. A., Hiller, A. L., Hu, S., Specketer, K., Montine, T. J., Edwards, K. L., Zabetian, C. P. 2020; 7 (1): 6169

Abstract

Cognitive dysfunction is common in Parkinson's disease (PD) and associated with reduced functional abilities and increased dependence. To date, however, little is known about the relationship between performance of instrumental activities of daily living (IADLs) and cognitive stages in PD, and there are conflicting reports as to whether declines in specific cognitive domains predict IADL impairment.Participants with PD were drawn from the Pacific Udall Center and included in the study if both participant and study partner IADL ratings and cognitive tests were completed (n = 192). Logistic regression analyses were performed to determine whether participant and/or study partner rating predicted mild cognitive impairment or dementia. Correlations are reported for the relationship between participant/study partner IADL reports as well as for specific cognitive tests.Although both participant and study partner ratings of IADL performance were associated with a diagnosis of PD with dementia, only participant self-rating of functional ability was significantly associated with a diagnosis of PD with mild cognitive impairment. Functional ability correlated most strongly with measures of processing speed, auditory working memory, and immediate verbal recall for both the participant and study partner ratings.For participants with PD in the early stages of cognitive decline, self-rating may be more sensitive to the impact of cognitive changes on IADL function than ratings made by a knowledgeable study partner. Changes in executive function, processing speed, and learning may indicate a higher likelihood of IADL impairment. Careful assessment of cognition and IADL performance is recommended to permit individualized interventions prior to significant disability.

View details for DOI 10.1002/mdc3.12870

View details for Web of Science ID 000507324100010

View details for PubMedID 31970213

View details for PubMedCentralID PMC6962683

Sensorimotor Inhibition and Mobility in Genetic Subgroups of Parkinson's Disease. Frontiers in neurology Martini, D. N., Morris, R. n., Kelly, V. E., Hiller, A. n., Chung, K. A., Hu, S. C., Zabetian, C. P., Oakley, J. n., Poston, K. n., Mata, I. F., Edwards, K. L., Lapidus, J. A., Grabowski, T. J., Montine, T. J., Quinn, J. F., Horak, F. n. 2020; 11: 893

Abstract

Background: Mobility and sensorimotor inhibition impairments are heterogeneous in Parkinson's disease (PD). Genetics may contribute to this heterogeneity since the apolipoprotein (APOE) 4 allele and glucocerebrosidase (GBA) gene variants have been related to mobility impairments in otherwise healthy older adult (OA) and PD cohorts. The purpose of this study is to determine if APOE or GBA genetic status affects sensorimotor inhibition and whether the relationship between sensorimotor inhibition and mobility differs in genetic sub-groups of PD. Methods: Ninety-three participants with idiopathic PD (53 non-carriers; 23 4 carriers; 17 GBA variants) and 72 OA (45 non-carriers; 27 4 carriers) had sensorimotor inhibition characterized by short-latency afferent inhibition. Mobility was assessed in four gait domains (pace/turning, rhythm, trunk, variability) and two postural sway domains (area/jerkiness and velocity) using inertial sensors. Results: Sensorimotor inhibition was worse in the PD than OA group, with no effect of genetic status. Gait pace/turning was slower and variability was higher (p < 0.01) in PD compared to OA. Postural sway area/jerkiness (p < 0.01) and velocity (p < 0.01) were also worse in the PD than OA group. Genetic status was not significantly related to any gait or postural sway domain. Sensorimotor inhibition was significantly correlated with gait variability (r = 0.27; p = 0.02) and trunk movement (r = 0.23; p = 0.045) in the PD group. In PD non-carriers, sensorimotor inhibition related to variability (r = 0.35; p = 0.010) and trunk movement (r = 0.31; p = 0.025). In the PD 4 group, sensorimotor inhibition only related to rhythm (r = 0.47; p = 0.024), while sensorimotor inhibition related to pace/turning (r = -0.49; p = 0.046) and rhythm (r = 0.59; p = 0.013) in the PD GBA group. Sensorimotor inhibition was significantly correlated with gait pace/turning (r = -0.27; p = 0.04) in the OA group. There was no relationship between sensorimotor inhibition and postural sway. Conclusion: 4 and GBA genetic status did not affect sensorimotor inhibition or mobility impairments in this PD cohort. However, worse sensorimotor inhibition was associated with gait variability in PD non-carriers, but with gait rhythm in PD 4 carriers and with gait rhythm and pace in PD with GBA variants. Impaired sensorimotor inhibition had a larger effect on mobility in people with PD than OA and affected different domains of mobility depending on genetic status.

View details for DOI 10.3389/fneur.2020.00893

View details for PubMedID 33013627

View details for PubMedCentralID PMC7498564

Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns. Journal of neuropathology and experimental neurology Asher, D. M., Belay, E. n., Bigio, E. n., Brandner, S. n., Brubaker, S. A., Caughey, B. n., Clark, B. n., Damon, I. n., Diamond, M. n., Freund, M. n., Hyman, B. T., Jucker, M. n., Keene, C. D., Lieberman, A. P., Mackiewicz, M. n., Montine, T. J., Morgello, S. n., Phelps, C. n., Safar, J. n., Schneider, J. A., Schonberger, L. B., Sigurdson, C. n., Silverberg, N. n., Trojanowski, J. Q., Frosch, M. P. 2020

Abstract

Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting. The committee concluded that, based on all currently available data, although neurodegenerative disease-associated aggregates of several different non-prion proteins can be propagated from humans to experimental animals, there is currently insufficient evidence to suggest more than a negligible risk, if any, of a direct infectious etiology for the human neurodegenerative disorders defined in part by these proteins. Given the importance of this question, the potential for noninvasive human transmission of proteopathic disorders is deserving of further investigation.

View details for DOI 10.1093/jnen/nlaa109

View details for PubMedID 33000167

Multivariate prediction of dementia in Parkinson's disease. NPJ Parkinson's disease Phongpreecha, T. n., Cholerton, B. n., Mata, I. F., Zabetian, C. P., Poston, K. L., Aghaeepour, N. n., Tian, L. n., Quinn, J. F., Chung, K. A., Hiller, A. L., Hu, S. C., Edwards, K. L., Montine, T. J. 2020; 6: 20

Abstract

Cognitive impairment in Parkinson's disease (PD) is pervasive with potentially devastating effects. Identification of those at risk for cognitive decline is vital to identify and implement appropriate interventions. Robust multivariate approaches, including fixed-effect, mixed-effect, and multitask learning models, were used to study associations between biological, clinical, and cognitive factors and for predicting cognitive status longitudinally in a well-characterized prevalent PD cohort (n=827). Age, disease duration, sex, and GBA status were the primary biological factors associated with cognitive status and progression to dementia. Specific cognitive tests were better predictors of subsequent cognitive status for cognitively unimpaired and dementia groups. However, these models could not accurately predict future mild cognitive impairment (PD-MCI). Data collected from a large PD cohort thus revealed the primary biological and cognitive factors associated with dementia, and provide clinicians with data to aid in the identification of risk for dementia. Sex differences and their potential relationship to genetic status are also discussed.

View details for DOI 10.1038/s41531-020-00121-2

View details for PubMedID 32885039

View details for PubMedCentralID PMC7447766

Author Correction: Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nature communications Scharenberg, S. G., Poletto, E. n., Lucot, K. L., Colella, P. n., Sheikali, A. n., Montine, T. J., Porteus, M. H., Gomez-Ospina, N. n. 2020; 11 (1): 4231

Abstract

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View details for DOI 10.1038/s41467-020-18044-0

View details for PubMedID 32820153

Engineering monocyte/macrophagespecific glucocerebrosidase expression in human hematopoietic stem cells using genome editing Nature Communications Scharenberg, S. G., Poletto, E., Lucot, K. L., Colella, P., Sheikali, A., Montine, T. J., Porteus, M. H., Gomez-Ospina, N. 2020; 11: 1-14
Arterial spin labeling detects perfusion patterns related to motor symptoms in Parkinson's disease. Parkinsonism & related disorders Rane, S. n., Koh, N. n., Oakley, J. n., Caso, C. n., Zabetian, C. P., Cholerton, B. n., Montine, T. J., Grabowski, T. n. 2020; 76: 2128

Abstract

Imaging neurovascular disturbances in Parkinson's disease (PD) is an excellent measure of disease severity. Indeed, a disease-specific regional pattern of abnormal metabolism has been identified using positron emission tomography. Only a handful of studies, however, have applied perfusion MRI to detect this disease pattern. Our goal was to replicate the evaluation of a PD-related perfusion pattern using scaled subprofile modeling/principal component analysis (SSM-PCA).We applied arterial spin labeling (ASL) MRI for this purpose. Uniquely, we assessed this pattern separately in PD individuals ON and OFF dopamine medications. We further compared the existence of these patterns and their strength in each individual with their Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor (MDS-UPDRS) scores, cholinergic tone as indexed by short-term afferent inhibition (SAI), and other neuropsychiatric tests.We observed a PD-related perfusion pattern that was similar to previous studies. The patterns were observed in both ON and OFF states but only the pattern in the OFF condition could significantly (AUC=0.72) differentiate between PD and healthy subjects. In the ON condition, PD subjects were similar to controls from a CBF standpoint (AUC=0.45). The OFF pattern prominently included the posterior cingulate, precentral region, precuneus, and the subcallosal cortex. Individual principal components from the ON and OFF states were strongly associated with MDS-UPDRS scores, SAI amplitude and latency.Using ASL, our study identified patterns of abnormal perfusion in PD and were associated with disease symptoms.

View details for DOI 10.1016/j.parkreldis.2020.05.014

View details for PubMedID 32559629

Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ digital medicine Kiani, A. n., Uyumazturk, B. n., Rajpurkar, P. n., Wang, A. n., Gao, R. n., Jones, E. n., Yu, Y. n., Langlotz, C. P., Ball, R. L., Montine, T. J., Martin, B. A., Berry, G. J., Ozawa, M. G., Hazard, F. K., Brown, R. A., Chen, S. B., Wood, M. n., Allard, L. S., Ylagan, L. n., Ng, A. Y., Shen, J. n. 2020; 3: 23

Abstract

Artificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored. In this study, we developed a deep learning-based assistant to help pathologists differentiate between two subtypes of primary liver cancer, hepatocellular carcinoma and cholangiocarcinoma, on hematoxylin and eosin-stained whole-slide images (WSI), and evaluated its effect on the diagnostic performance of 11 pathologists with varying levels of expertise. Our model achieved accuracies of 0.885 on a validation set of 26 WSI, and 0.842 on an independent test set of 80 WSI. Although use of the assistant did not change the mean accuracy of the 11 pathologists (p=0.184, OR=1.281), it significantly improved the accuracy (p=0.045, OR=1.499) of a subset of nine pathologists who fell within well-defined experience levels (GI subspecialists, non-GI subspecialists, and trainees). In the assisted state, model accuracy significantly impacted the diagnostic decisions of all 11 pathologists. As expected, when the model's prediction was correct, assistance significantly improved accuracy (p=0.000, OR=4.289), whereas when the model's prediction was incorrect, assistance significantly decreased accuracy (p=0.000, OR=0.253), with both effects holding across all pathologist experience levels and case difficulty levels. Our results highlight the challenges of translating AI models into the clinical setting, and emphasize the importance of taking into account potential unintended negative consequences of model assistance when designing and testing medical AI-assistance tools.

View details for DOI 10.1038/s41746-020-0232-8

View details for PubMedID 32140566

View details for PubMedCentralID PMC7044422

Soluble TREM2 is elevated in Parkinson's disease subgroups with increased CSF tau. Brain : a journal of neurology Wilson, E. N., Swarovski, M. S., Linortner, P. n., Shahid, M. n., Zuckerman, A. J., Wang, Q. n., Channappa, D. n., Minhas, P. S., Mhatre, S. D., Plowey, E. D., Quinn, J. F., Zabetian, C. P., Tian, L. n., Longo, F. M., Cholerton, B. n., Montine, T. J., Poston, K. L., Andreasson, K. I. 2020

Abstract

Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease and affects 1% of the population above 60 years old. Although Parkinson's disease commonly manifests with motor symptoms, a majority of patients with Parkinson's disease subsequently develop cognitive impairment, which often progresses to dementia, a major cause of morbidity and disability. Parkinson's disease is characterized by -synuclein accumulation that frequently associates with amyloid- and tau fibrils, the hallmarks of Alzheimer's disease neuropathological changes; this co-occurrence suggests that onset of cognitive decline in Parkinson's disease may be associated with appearance of pathological amyloid- and/or tau. Recent studies have highlighted the appearance of the soluble form of the triggering receptor expressed on myeloid cells 2 (sTREM2) receptor in CSF during development of Alzheimer's disease. Given the known association of microglial activation with advancing Parkinson's disease, we investigated whether CSF and/or plasma sTREM2 differed between CSF biomarker-defined Parkinson's disease participant subgroups. In this cross-sectional study, we examined 165 participants consisting of 17 cognitively normal elderly subjects, 45 patients with Parkinson's disease with no cognitive impairment, 86 with mild cognitive impairment, and 17 with dementia. Stratification of subjects by CSF amyloid- and tau levels revealed that CSF sTREM2 concentrations were elevated in Parkinson's disease subgroups with a positive tau CSF biomarker signature, but not in Parkinson's disease subgroups with a positive CSF amyloid- biomarker signature. These findings indicate that CSF sTREM2 could serve as a surrogate immune biomarker of neuronal injury in Parkinson's disease.

View details for DOI 10.1093/brain/awaa021

View details for PubMedID 32065223

Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature communications Reiman, E. M., Arboleda-Velasquez, J. F., Quiroz, Y. T., Huentelman, M. J., Beach, T. G., Caselli, R. J., Chen, Y. n., Su, Y. n., Myers, A. J., Hardy, J. n., Paul Vonsattel, J. n., Younkin, S. G., Bennett, D. A., De Jager, P. L., Larson, E. B., Crane, P. K., Keene, C. D., Kamboh, M. I., Kofler, J. K., Duque, L. n., Gilbert, J. R., Gwirtsman, H. E., Buxbaum, J. D., Dickson, D. W., Frosch, M. P., Ghetti, B. F., Lunetta, K. L., Wang, L. S., Hyman, B. T., Kukull, W. A., Foroud, T. n., Haines, J. L., Mayeux, R. P., Pericak-Vance, M. A., Schneider, J. A., Trojanowski, J. Q., Farrer, L. A., Schellenberg, G. D., Beecham, G. W., Montine, T. J., Jun, G. R. 2020; 11 (1): 667

Abstract

Each additional copy of the apolipoprotein E4 (APOE4) allele is associated with a higher risk of Alzheimer's dementia, while the APOE2 allele is associated with a lower risk of Alzheimer's dementia, it is not yet known whether APOE2 homozygotes have a particularly low risk. We generated Alzheimer's dementia odds ratios and other findings in more than 5,000 clinically characterized and neuropathologically characterized Alzheimer's dementia cases and controls. APOE2/2 was associated with a low Alzheimer's dementia odds ratios compared to APOE2/3 and 3/3, and an exceptionally low odds ratio compared to APOE4/4, and the impact of APOE2 and APOE4 gene dose was significantly greater in the neuropathologically confirmed group than in more than 24,000 neuropathologically unconfirmed cases and controls. Finding and targeting the factors by which APOE and its variants influence Alzheimer's disease could have a major impact on the understanding, treatment and prevention of the disease.

View details for DOI 10.1038/s41467-019-14279-8

View details for PubMedID 32015339

Cognitive Correlates of MRI-defined Cerebral Vascular Injury and Atrophy in Elderly American Indians: The Strong Heart Study. Journal of the International Neuropsychological Society : JINS Suchy-Dicey, A., Shibata, D., Cholerton, B., Nelson, L., Calhoun, D., Ali, T., Montine, T. J., Longstreth, W. T., Buchwald, D., Verney, S. P. 2019: 113

Abstract

OBJECTIVE: American Indians experience substantial health disparities relative to the US population, including vascular brain aging. Poorer cognitive test performance has been associated with cranial magnetic resonance imaging findings in aging community populations, but no study has investigated these associations in elderly American Indians.METHODS: We examined 786 American Indians aged 64 years and older from the Cerebrovascular Disease and its Consequences in American Indians study (2010-2013). Cranial magnetic resonance images were scored for cortical and subcortical infarcts, hemorrhages, severity of white matter disease, sulcal widening, ventricle enlargement, and volumetric estimates for white matter hyperintensities (WMHs), hippocampus, and brain. Participants completed demographic, medical history, and neuropsychological assessments including testing for general cognitive functioning, verbal learning and memory, processing speed, phonemic fluency, and executive function.RESULTS: Processing speed was independently associated with the presence of any infarcts, white matter disease, and hippocampal and brain volumes, independent of socioeconomic, language, education, and clinical factors. Other significant associations included general cognitive functioning with hippocampal volume. Nonsignificant, marginal associations included general cognition with WMH and brain volume; verbal memory with hippocampal volume; verbal fluency and executive function with brain volume; and processing speed with ventricle enlargement.CONCLUSIONS: Brain-cognition associations found in this study of elderly American Indians are similar to those found in other racial/ethnic populations, with processing speed comprising an especially strong correlate of cerebrovascular disease. These findings may assist future efforts to define opportunities for disease prevention, to conduct research on diagnostic and normative standards, and to guide clinical evaluation of this underserved and overburdened population.

View details for DOI 10.1017/S1355617719001073

View details for PubMedID 31791442

Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. The Lancet. Neurology Simuni, T., Uribe, L., Cho, H. R., Caspell-Garcia, C., Coffey, C. S., Siderowf, A., Trojanowski, J. Q., Shaw, L. M., Seibyl, J., Singleton, A., Toga, A. W., Galasko, D., Foroud, T., Tosun, D., Poston, K., Weintraub, D., Mollenhauer, B., Tanner, C. M., Kieburtz, K., Chahine, L. M., Reimer, A., Hutten, S. J., Bressman, S., Marek, K., PPMI Investigators, Arnedo, V., Clark, A., Fraiser, M., Kopil, C., Chowdhury, S., Sherer, T., Daegele, N., Casaceli, C., Dorsey, R., Wilson, R., Mahes, S., Salerno, C., Crawford, K., Casalin, P., Malferrari, G., Weisz, M. G., Orr-Urtreger, A., Montine, T., Baglieri, C., Christini, A., Russell, D., Dahodwala, N., Giladi, N., Factor, S., Hogarth, P., Standaert, D., Hauser, R., Jankovic, J., Saint-Hilaire, M., Richard, I., Shprecher, D., Fernandez, H., Brockmann, K., Rosenthal, L., Barone, P., Espay, A., Rowe, D., Marder, K., Santiago, A., Hu, S., Isaacson, S., Corvol, J., Ruiz Martinez, J., Tolosa, E., Tai, Y., Politis, M., Smejdir, D., Rees, L., Williams, K., Kausar, F., Williams, K., Richardson, W., Willeke, D., Peacock, S., Sommerfeld, B., Freed, A., Wakeman, K., Blair, C., Guthrie, S., Harrell, L., Hunter, C., Thomas, C., James, R., Zimmerman, G., Brown, V., Mule, J., Hilt, E., Ribb, K., Ainscough, S., Wethington, M., Ranola, M., Mejia Santana, H., Moreno, J., Raymond, D., Speketer, K., Carvajal, L., Carvalo, S., Croitoru, I., Garrido, A., Payne, L. M., Viswanth, V., Severt, L., Facheris, M., Soares, H., Mintun, M. A., Cedarbaum, J., Taylor, P., Biglan, K., Vandenbroucke, E., Haider Sheikh, Z., Bingol, B., Fischer, T., Sardi, P., Forrat, R., Reith, A., Egebjerg, J., Ahlberg Hillert, G., Saba, B., Min, C., Umek, R., Mather, J., De Santi, S., Post, A., Boess, F., Taylor, K., Grachev, I., Avbersek, A., Muglia, P., Merchant, K., Tauscher, J. 2019

Abstract

BACKGROUND: The Parkinson's Progression Markers Initiative (PPMI) is an ongoing observational, longitudinal cohort study of participants with Parkinson's disease, healthy controls, and carriers of the most common Parkinson's disease-related genetic mutations, which aims to define biomarkers of Parkinson's disease diagnosis and progression. All participants are assessed annually with a battery of motor and non-motor scales, 123-I Ioflupane dopamine transporter (DAT) imaging, and biological variables. We aimed to examine whether non-manifesting carriers of LRRK2 and GBA mutations have prodromal features of Parkinson's disease that correlate with reduced DAT binding.METHODS: This cross-sectional analysis is based on assessments done at enrolment in the subset of non-manifesting carriers of LRRK2 and GBA mutations enrolled into the PPMI study from 33 participating sites worldwide. The primary objective was to examine baseline clinical and DAT imaging characteristics in non-manifesting carriers with GBA and LRRK2 mutations compared with healthy controls. DAT deficit was defined as less than 65% of putamen striatal binding ratio expected for the individual's age. We used t tests, chi2 tests, and Fisher's exact tests to compare baseline demographics across groups. An inverse probability weighting method was applied to control for potential confounders such as age and sex. To account for multiple comparisons, we applied a family-wise error rate to each set of analyses. This study is registered with ClinicalTrials.gov, number NCT01141023.FINDINGS: Between Jan 1, 2014, and Jan 1, 2019, the study enrolled 208 LRRK2 (93% G2019S) and 184 GBA (96% N370S) non-manifesting carriers. Both groups were similar with respect to mean age, and about 60% were female. Of the 286 (73%) non-manifesting carriers that had DAT imaging results, 18 (11%) LRRK2 and four (3%) GBA non-manifesting carriers had a DAT deficit. Compared with healthy controls, both LRRK2 and GBA non-manifesting carriers had significantly increased mean scores on the Movement Disorders Society Unified Parkinson's Disease Rating Scale (total score 46 [SD 44] healthy controls vs 84 [73] LRRK2 vs 95 [92] GBA, p<00001 for both comparisons) and the Scale for Outcomes for PD - autonomic function (58 [37] vs 81 [59] and 84 [60], p<00001 for both comparisons). There was no difference in daytime sleepiness, anxiety, depression, impulsive-compulsive disorders, blood pressure, urate, and rapid eye movement (REM) behaviour disorder scores. Hyposmia was significantly more common only in LRRK2 non-manifesting carriers (69 [36%] of 194 healthy controls vs 114 [55%] of 208 LRRK2 non-manifesting carriers; p=00003). Finally, GBA but not LRRK2 non-manifesting carriers showed increased DAT striatal binding ratios compared with healthy controls in the caudate (healthy controls 298 [SD 063] vs GBA 326 [063]; p<00001), putamen (215 [056] vs 248 [052]; p<00001), and striatum (256 [057] vs 287 [055]; p<00001).INTERPRETATION: Our data show evidence of subtle motor and non-motor signs of Parkinson's disease in non-manifesting carriers compared with healthy controls that can precede DAT deficit. Longitudinal data will be essential to confirm these findings and define the trajectory and predictors for development of Parkinson's disease.FUNDING: Michael J Fox Foundation for Parkinson's Research.

View details for DOI 10.1016/S1474-4422(19)30319-9

View details for PubMedID 31678032

Association Between Sepsis and Microvascular Brain Injury. Critical care medicine Ehlenbach, W. J., Sonnen, J. A., Montine, T. J., Larson, E. B. 2019

Abstract

OBJECTIVES: Many survivors of sepsis suffer long-term cognitive impairment, but the mechanisms of this association remain unknown. The objective of this study was to determine whether sepsis is associated with cerebral microinfarcts on brain autopsy.DESIGN: Retrospective cohort study.SETTING AND SUBJECTS: Five-hundred twenty-nine participants of the Adult Changes in Thought, a population-based prospective cohort study of older adults carried out in Kaiser Permanente Washington greater than or equal to 65 years old without dementia at study entry and who underwent brain autopsy.MEASUREMENTS AND MAIN RESULTS: Late-life sepsis hospitalization was identified using administrative data. We identified 89 individuals with greater than or equal to 1 sepsis hospitalization during study participation, 80 of whom survived hospitalization and died a median of 169 days after discharge. Thirty percent of participants with one or more sepsis hospitalization had greater than two microinfarcts, compared with 19% participants without (chi p = 0.02); 20% of those with sepsis hospitalization had greater than two microinfarcts in the cerebral cortex, compared with 10% of those without (chi p = 0.01). The adjusted relative risk of greater than two microinfarcts was 1.61 (95% CI, 1.01-2.57; p = 0.04); the relative risk for having greater than two microinfarcts in the cerebral cortex was 2.12 (95% CI, 1.12-4.02; p = 0.02). There was no difference in Braak stage for neurofibrillary tangles or consortium to establish a registry for Alzheimer's disease score for neuritic plaques between, but Lewy bodies were less significantly common in those with sepsis.CONCLUSIONS: Sepsis was specifically associated with moderate to severe vascular brain injury as assessed by microvascular infarcts. This association was stronger for microinfarcts within the cerebral cortex, with those who experienced severe sepsis hospitalization being more than twice as likely to have evidence of moderate to severe cerebral cortical injury in adjusted analyses. Further study to identify mechanisms for the association of sepsis and microinfarcts is needed.

View details for DOI 10.1097/CCM.0000000000003924

View details for PubMedID 31389836

Effect of dopaminergic medications on BOLD variability and functional connectivity in Parkinson's disease. Brain connectivity Day, T. K., Madhyastha, T. M., Lee, A., Zabetian, C. P., Montine, T. J., Grabowski, T. 2019

Abstract

Both functional connectivity (FC) and blood oxygen level-dependent (BOLD) signal variability (SDBOLD) are methods to examine the physiological state of the brain. Although they are derived from signal changes and are related, few studies have explored their relationship. Here, we examined the relationship between SDBOLD and FC within the default mode network (DMN) in participants with Parkinson's disease ON and OFF dopaminergic medications. Dopaminergic medications had profound effects on both DMN FC and SDBOLD measured separately. Analyzing DMN FC and SDBOLD in a joint independent component analysis, we identified joint components of DMN FC and SDBOLD that were separately associated with measurements of motor and cognitive impairment. Dopaminergic medications had a differential effect on these components depending on these measures of disease severity, "normalizing" the relationships. Importantly, we show that dopaminergic medication status matters in imaging PD; and can affect both connectivity and SDBOLD. Imaging PD ON may lead to inflated estimates of SDBOLD and diminish the ability to measure changes associated with declining motor and cognitive capacities.

View details for DOI 10.1089/brain.2019.0677

View details for PubMedID 31131605

Cognitive Performance in Parkinson's Disease in the Brain Health Registry. Journal of Alzheimer's disease : JAD Cholerton, B., Weiner, M. W., Nosheny, R. L., Poston, K. L., Scott Mackin, R., Tian, L., Ashford, J. W., Montine, T. J. 2019

Abstract

The study of cognition in Parkinson's disease (PD) traditionally requires exhaustive recruitment strategies. The current study examines data collected by the Brain Health Registry (BHR) to determine whether ongoing efforts to improve the recruitment base for therapeutic trials in Alzheimer's disease may be similarly effective for PD research, and whether online cognitive measurements can discriminate between participants who do and do not report a PD diagnosis. Participants enrolled in the BHR (age 50) with self-reported PD data and online cognitive testing available were included (n=11,813). Associations between baseline cognitive variables and diagnostic group were analyzed using logistic regression. Linear mixed effects models were used to analyze longitudinal data. A total of 634 participants reported PD diagnosis at baseline with no self-reported cognitive impairment and completed cognitive testing. Measures of visual learning and memory, processing speed, attention, and working memory discriminated between self-reported PD and non-PD participants after correcting for multiple comparisons (p values< 0.006). Scores on all cognitive tests improved over time in PD and controls with the exception of processing speed, which remained stable in participants with PD while improving in those without. We demonstrate that a novel online approach to recruitment and longitudinal follow-up of study participants is effective for those with self-reported PD, and that significant differences exist between those with and without a reported diagnosis of PD on computerized cognitive measures. These results have important implications for recruitment of participants with PD into targeted therapeutic trials or large-scale genetic and cognitive studies.

View details for PubMedID 30909225

Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimer's research & therapy Montine, T. J., Cholerton, B. A., Corrada, M. M., Edland, S. D., Flanagan, M. E., Hemmy, L. S., Kawas, C. H., White, L. R. 2019; 11 (1): 22

Abstract

A primary goal of research in cognitive impairment and dementia is to understand how some individuals retain sufficient cognitive function for a fulfilling life while many others are robbed of their independence, sometimes their essence, in the last years and decades of life. In this commentary, we propose operational definitions of the types of factors that may help individuals retain cognitive function with aging. We propose operational definitions of resistance, resilience, reserve, with an eye toward how these may be measured and interpreted, and how they may enable research aimed at prevention. With operational definitions and quantification of resistance, resilience, and reserve, a focused analytic search for their determinants and correlates can be undertaken. This approach, essentially a search to identify protective risk factors and their mechanisms, represents a relatively unexplored pathway toward the identification of candidate preventive interventions.

View details for PubMedID 30857563

Comparative sensitivity of the MoCA and Mattis Dementia Rating Scale-2 in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society Hendershott, T. R., Zhu, D., Llanes, S., Zabetian, C. P., Quinn, J., Edwards, K. L., Leverenz, J. B., Montine, T., Cholerton, B., Poston, K. L. 2019; 34 (2): 28591

Abstract

BACKGROUND: Clinicians and researchers commonly use global cognitive assessments to screen for impairment. Currently there are no published studies directly comparing the sensitivity and specificity of the Montreal Cognitive Assessment and Mattis Dementia Rating Scale-2 in PD. The objective of this study was to identify the relative sensitivity and specificity of the Montreal Cognitive Assessment and Mattis Dementia Rating Scale-2 in PD.METHODS: The Montreal Cognitive Assessment and Mattis Dementia Rating Scale-2 were administered to training and validation cohorts. Cutoff scores were determined within the training cohort (n = 85) to optimize sensitivity and specificity for cognitive impairment and were applied to an independent validation cohort (n = 521).RESULTS: The Montreal Cognitive Assessment was consistently sensitive across training and validation cohorts (90.0% and 80.3%, respectively), whereas the Mattis Dementia Rating Scale-2 was not (87.5% and 60.3%, respectively). In individual domains, the Montreal Cognitive Assessment remained sensitive to memory and visuospatial impairments (91.9% and 87.8%, respectively), whereas the Mattis Dementia Rating Scale-2 was sensitive to executive impairments (86.2%).CONCLUSION: The Montreal Cognitive Assessment and Mattis Dementia Rating Scale-2 demonstrated individual strengths. Future work should focus on developing domain-specific cognitive screening tools for PD. 2018 International Parkinson and Movement Disorder Society.

View details for PubMedID 30776152

"Alzheimer's disease" is neither "Alzheimer's clinical syndrome" nor "dementia". Alzheimer's & dementia : the journal of the Alzheimer's Association Jagust, W., Jack, C. R., Bennett, D. A., Blennow, K., Haeberlein, S. B., Holtzman, D. M., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Sperling, R. 2019; 15 (1): 15357

View details for PubMedID 30642435

Attention Network Test fMRI data for participants with Parkinson's disease and healthy elderly. F1000Research Day, T. K., Madhyastha, T. M., Askren, M. K., Boord, P., Montine, T. J., Grabowski, T. J. 2019; 8: 780

Abstract

Here, we present unprocessed and preprocessed Attention Network Test data from 25 adults with Parkinson's disease and 21 healthy adults, along with the associated defaced structural scans. The preprocessed data has been processed with a provided Analysis of Functional NeuroImages afni_proc.py script and includes structural scans that were skull-stripped before defacing. All acquired demographic and neuropsychological data are included.

View details for DOI 10.12688/f1000research.19288.1

View details for PubMedID 32477494

Cognitive associations with comprehensive gait and static balance measures in Parkinson's disease. Parkinsonism & related disorders Morris, R. n., Martini, D. N., Smulders, K. n., Kelly, V. E., Zabetian, C. P., Poston, K. n., Hiller, A. n., Chung, K. A., Yang, L. n., Hu, S. C., Edwards, K. L., Cholerton, B. n., Grabowski, T. J., Montine, T. J., Quinn, J. F., Horak, F. n. 2019; 69: 10410

Abstract

Gait and balance impairments are cardinal features of Parkinson's disease (PD) that require cognitive input. However, the extent to which specific gait and balance characteristics relate to cognition in PD is unclear. In addition, independent models of gait and balance have not been developed from the same cohort. We aimed to i) develop models of gait and balance in a large PD cohort and ii) determine which gait and balance characteristics best related to cognition.One hundred and ninety-eight people with PD were recruited to the Pacific Udall Center. Using six inertial sensors (APDM, Inc.), comprehensive gait measurements were collected over a 2-min continuous walk and comprehensive static balance measures were collected during a 60-second standing task. Six domains of cognition were assessed: global cognition, attention, executive function, language, memory, and visuospatial function. Correlations and hierarchical linear regression determined independent associations.Principal components analysis identified a gait model containing four domains accounting for 80.1% of total variance: pace/turning, rhythm, variability, and trunk. The balance model contained four independent domains accounting for 84.5% of total variance: sway area/jerkiness, sway velocity, sway frequency anteroposterior, and sway frequency mediolateral. Gait domains of pace/turning and variability were strongly associated with attention and executive function. Sway area and jerkiness of balance associated with attention and visuospatial function.Gait and balance characteristics were associated with specific types of cognition. The specific relationships between gait or balance with cognitive functions suggests shared cerebral cortical circuitry for mobility and cognitive functions.

View details for DOI 10.1016/j.parkreldis.2019.06.014

View details for PubMedID 31731260

Cognitive Performance in Parkinson's Disease in the Brain Health Registry JOURNAL OF ALZHEIMERS DISEASE Cholerton, B., Weiner, M. W., Nosheny, R. L., Poston, K. L., Mackin, R., Tian, L., Ashford, J., Montine, T. J. 2019; 68 (3): 102938

View details for DOI 10.3233/JAD-181009

View details for Web of Science ID 000464031500013

TDP-43 Neuropathologic Associations in the Nun Study and the Honolulu-Asia Aging Study. Journal of Alzheimer's disease : JAD Flanagan, M. E., Cholerton, B., Latimer, C. S., Hemmy, L. S., Edland, S. D., Montine, K. S., White, L. R., Montine, T. J. 2018

Abstract

Transactive response binding protein-43 (TDP-43) cytoplasmic neuronal and glial aggregates (pathologic TDP-43) have been described in multiple brain diseases. We describe the associations between neuropathologically confirmed TDP-43 and cognition in two population-based cohorts: the Nun Study (NS) and the Honolulu-Asia Aging Study (HAAS). In the HAAS, there was a significant association between hippocampal sclerosis (HS) and TDP-43 (OR=11.04, p< 0.0001, 95% CI 3.57-34.13). In the NS, there were significant associations between TDP-43 and HS (OR=16.44, p> 0.001 95%, CI 7.10-38.00) and Alzheimer's disease (AD) severity (OR=1.74, p=0.009, 95% CI 1.15-2.64). When cognitive scores were added to the model, HS remained significant but the other variables were not. When HS was removed from the model, the overall model remained significant and the associations between cognitive performance and TDP-43 (OR=2.11, p=0.022, 95% CI 1.11-4.02) were significant. In the NS, there was a significant association between cognitive performance and TDP-43 (OR 1.94 p=0.005, 95% CI 1.22-3.09) (HS remained significant, but AD did not). When HS was removed from the model, only CERAD was significant (OR=2.43 p< 0.001, 95% CI 1.58-3.74). These results support a consistent association between pathologic TDP-43, HS, and the development of cognitive impairment in two large studies of brain aging, while the relationship between AD pathology and TDP-43 may vary according to cohort-specific features.

View details for PubMedID 30452409

The Revised National Alzheimer's Coordinating Center's Neuropathology Form-Available Data and New Analyses JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY Besser, L. M., Kukull, W. A., Teylan, M. A., Bigio, E. H., Cairns, N. J., Kofler, J. K., Montine, T. J., Schneider, J. A., Nelson, P. T. 2018; 77 (8): 71726

Abstract

Neuropathologic evaluation remains the gold standard for determining the presence and severity of aging-related neurodegenerative diseases. Researchers at U.S. Alzheimer's Disease Centers (ADCs) have worked for >30years studying human brains, with the goals of achieving new research breakthroughs. Harmonization and sharing among the 39 current and past ADCs is promoted by the National Alzheimer's Coordinating Center (NACC), which collects, audits, and disburses ADC-derived data to investigators on request. The past decades have witnessed revised disease definitions paired with dramatic expansion in the granularity and multimodality of the collected data. The NACC database now includes cognitive test scores, comorbidities, drug history, neuroimaging, and links to genomics. Relatively, recent advances in the neuropathologic diagnoses of Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and vascular contributions to cognitive impairment and dementia catalyzed a 2014 update to the NACC Neuropathology Form completed by all ADCs. New focal points include cerebrovascular disease (including arteriolosclerosis, microbleeds, and microinfarcts), hippocampal sclerosis, TDP-43, and FTLD. Here, we provide summary data and analyses to illustrate the potential for both hypothesis-testing and also generating new hypotheses using the NACC Neuropathology data set, which represents one of the largest multi-center databases of carefully curated neuropathologic information that is freely available to researchers worldwide.

View details for PubMedID 29945202

View details for PubMedCentralID PMC6044344

Sex-Specific Association of Apolipoprotein E With Cerebrospinal Fluid Levels of Tau JAMA NEUROLOGY Hohman, T. J., Dumitrescu, L., Barnes, L. L., Thambisetty, M., Beecham, G., Kunkle, B., Gifford, K. A., Bush, W. S., Chibnik, L. B., Mukherjee, S., De Jager, P. L., Kukull, W., Crane, P. K., Resnick, S. M., Keene, D., Montine, T. J., Schellenberg, G. D., Haines, J. L., Zetterberg, H., Blennow, K., Larson, E. B., Johnson, S. C., Albert, M., Bennett, D. A., Schneider, J. A., Jefferson, A. L., Alzheimers Dis Genetics Consortium, Alzheimer's Dis Neuroimaging 2018; 75 (8): 98998

Abstract

The strongest genetic risk factor for Alzheimer disease (AD), the apolipoprotein E (APOE) gene, has a stronger association among women compared with men. Yet limited work has evaluated the association between APOE alleles and markers of AD neuropathology in a sex-specific manner.To evaluate sex differences in the association between APOE and markers of AD neuropathology measured in cerebrospinal fluid (CSF) during life or in brain tissue at autopsy.This multicohort study selected data from 10 longitudinal cohort studies of normal aging and AD. Cohorts had variable recruitment criteria and follow-up intervals and included population-based and clinic-based samples. Inclusion in our analysis required APOE genotype data and either CSF data available for analysis. Analyses began on November 6, 2017, and were completed on December 20, 2017.Biomarker analyses included levels of -amyloid 42, total tau, and phosphorylated tau measured in CSF. Autopsy analyses included Consortium to Establish a Registry for Alzheimer's Disease staging for neuritic plaques and Braak staging for neurofibrillary tangles.Of the 1798 patients in the CSF biomarker cohort, 862 were women, 226 had AD, 1690 were white, and the mean (SD) age was 70 [9] years. Of the 5109 patients in the autopsy cohort, 2813 were women, 4953 were white, and the mean (SD) age was 84 (9) years. After correcting for multiple comparisons using the Bonferroni procedure, we observed a statistically significant interaction between APOE-4 and sex on CSF total tau (=0.41; 95% CI, 0.27-0.55; P<.001) and phosphorylated tau (=0.24; 95% CI, 0.09-0.38; P=.001), whereby APOE showed a stronger association among women compared with men. Post hoc analyses suggested this sex difference was present in amyloid-positive individuals (=0.41; 95% CI, 0.20-0.62; P<.001) but not among amyloid-negative individuals (=0.06; 95% CI, -0.18 to 0.31; P=.62). We did not observe sex differences in the association between APOE and -amyloid 42, neuritic plaque burden, or neurofibrillary tangle burden.We provide robust evidence of a stronger association between APOE-4 and CSF tau levels among women compared with men across multiple independent data sets. Interestingly, APOE-4 is not differentially associated with autopsy measures of neurofibrillary tangles. Together, the sex difference in the association between APOE and CSF measures of tau and the lack of a sex difference in the association with neurofibrillary tangles at autopsy suggest that APOE may modulate risk for neurodegeneration in a sex-specific manner, particularly in the presence of amyloidosis.

View details for PubMedID 29801024

Associations of APOE in the Honolulu Asia Aging Study Flanagan, M., Edland, S., Hemmy, L., Cholerton, B., Montine, T., White, L. OXFORD UNIV PRESS INC. 2018: 498
Neuropathologic Associations of APOE in the Nun Study Flanagan, M., Edland, S., Hemmy, L., Meints, J., Cholerton, B., Lim, K., Montine, T., White, L. OXFORD UNIV PRESS INC. 2018: 499
The National Institute on Aging and the Alzheimer's Association Research Framework for Alzheimer's disease: Perspectives from the Research Roundtable ALZHEIMERS & DEMENTIA Knopman, D. S., Haeberlein, S., Carrillo, M. C., Hendrix, J. A., Kerchner, G., Margolin, R., Maruff, P., Miller, D. S., Tong, G., Tome, M. B., Murray, M. E., Nelson, P. T., Sano, M., Mattsson, N., Sultzer, D. L., Montine, T. J., Jack, C. R., Kolb, H., Petersen, R. C., Vemuri, P., Canniere, M., Schneider, J. A., Resnick, S. M., Romano, G., van Harten, A., Wolk, D. A., Bain, L. J., Siemers, E. 2018; 14 (4): 56375

Abstract

The Alzheimer's Association's Research Roundtable met in November 2017 to explore the new National Institute on Aging and the Alzheimer's Association Research Framework for Alzheimer's disease. The meeting allowed experts in the field from academia, industry, and government to provide perspectives on the new National Institute on Aging and the Alzheimer's Association Research Framework. This review will summarize the "A, T, N System" (Amyloid, Tau, and Neurodegeneration) using biomarkers and how this may be applied to clinical research and drug development. In addition, challenges and barriers to the potential adoption of this new framework will be discussed. Finally, future directions for research will be proposed.

View details for PubMedID 29653607

NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease ALZHEIMERS & DEMENTIA Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Luis Molinuevo, J., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., Sperling, R., Elliott, C., Masliah, E., Ryan, L., Silverberg, N. 2018; 14 (4): 53562

Abstract

In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or invivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that -amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

View details for PubMedID 29653606

View details for PubMedCentralID PMC5958625

Sex differences in progression to mild cognitive impairment and dementia in Parkinson's disease. Parkinsonism & related disorders Cholerton, B., Johnson, C. O., Fish, B., Quinn, J. F., Chung, K. A., Peterson-Hiller, A. L., Rosenthal, L. S., Dawson, T. M., Albert, M. S., Hu, S., Mata, I. F., Leverenz, J. B., Poston, K. L., Montine, T. J., Zabetian, C. P., Edwards, K. L. 2018

Abstract

INTRODUCTION: Identification of factors associated with progression of cognitive symptoms in Parkinson's disease (PD) is important for treatment planning, clinical care, and design of future clinical trials. The current study sought to identify whether prediction of cognitive progression is aided by examining baseline cognitive features, and whether this differs according to stage of cognitive disease.METHODS: Participants with PD in the Pacific Udall Center Clinical Consortium who had longitudinal data available and were nondemented at baseline were included in the study (n=418). Logistic and Cox regression models were utilized to examine the relationship between cognitive, demographic, and clinical variables with risk and time to progression from no cognitive impairment to mild cognitive impairment (PD-MCI) or dementia (PDD), and from PD-MCI to PDD.RESULTS: Processing speed (OR=1.05, p=0.009) and working memory (OR=1.01, p=0.03) were associated with conversion to PDD among those with PD-MCI at baseline, over and above demographic variables. Conversely, the primary predictive factor in the transition from no cognitive impairment to PD-MCI or PDD was male sex (OR=4.47, p=0.004), and males progressed more rapidly than females (p=0.01). Further, among females with shorter disease duration, progression was slower than for their male counterparts, and poor baseline performance on semantic verbal fluency was associated with shorter time to cognitive impairment in females but not in males.CONCLUSIONS: This study provides evidence for sex differences in the progression to cognitive impairment in PD, while specific cognitive features become more important indicators of progression with impending conversion to PDD.

View details for PubMedID 29478836

Application of the condensed protocol for the NIA-AA guidelines for the neuropathological assessment of Alzheimer's disease in an academic clinical practice HISTOPATHOLOGY Bharadwaj, R., Cimino, P. J., Flanagan, M. E., Latimer, C. S., Gonzalez-Cuyar, L. F., Juric-Sekhar, G., Montine, T. J., Marshall, D. A., Keene, C. 2018; 72 (3): 43340

Abstract

In response to concerns regarding resource expenditures required to implement fully the 2012 National Institute on Aging and the Alzheimer's Association (NIA-AA) Sponsored Guidelines for the neuropathological assessment of Alzheimer's disease (AD), we previously developed a sensitive and cost-reducing condensed protocol (CP) at the University of Washington (UW) Alzheimer's Disease Research Center (ADRC) that consolidated the recommended NIA-AA protocol into fewer cassettes requiring fewer immunohistochemical stains. The CP was not designed to replace NIA-AA protocols, but instead to make the NIA-AA criteria accessible to clinical and forensic neuropathology practices where resources limit full implementation of NIA-AA guidelines.In this regard, we developed practical criteria to instigate CP sampling and immunostaining, and applied these criteria in an academic clinical neuropathological practice. During the course of 1 year, 73 cases were sampled using the CP; of those, 53 (72.6%) contained histological features that prompted CP work-up. We found that the CP resulted in increased identification of AD and Lewy body disease neuropathological changes from what was expected using a clinical history-driven work-up alone, while saving approximately $900 per case.This study demonstrates the feasibility and cost-savings of the CP applied to a clinical autopsy practice, and highlights potentially unrecognised neurodegenerative disease processes in the general ageing community.

View details for PubMedID 28815699

View details for PubMedCentralID PMC5771846

Associations between Use of Specific Analgesics and Concentrations of Amyloid-beta 42 or Phospho-Tau in Regions of Human Cerebral Cortex JOURNAL OF ALZHEIMERS DISEASE Flanagan, M. E., Larson, E. B., Walker, R. L., Keene, C., Postupna, N., Cholerton, B., Sonnen, J. A., Dublin, S., Crane, P. K., Montine, T. J. 2018; 61 (2): 65362

Abstract

Analgesics are commonly used by older adults, raising the question of whether their use might contribute to dementia risk and neuropathologic changes of Alzheimer's disease (AD). The Adult Changes in Thought (ACT) study is a population-based study of brain aging and incident dementia among people 65 years or older who are community dwelling and not demented at entry. Amyloid- (A)42 and phospho-tau were quantified using Histelide in regions of cerebral cortex from 420 brain autopsies. Total standard daily doses of prescription opioid and non-aspirin nonsteroidal anti-inflammatory drug (NSAID) exposure during a defined 10-year exposure window were identified using automated pharmacy dispensing data and used to classify people as having no/low, intermediate, or high exposure. People with high NSAID exposure had significantly greater A42 concentration in middle frontal gyrus and superior and middle temporal gyri, but not inferior parietal lobule; no A42 regional concentration was associated with prescription opioid usage. People with high opioid usage had significantly greater concentration of phospho-tau in middle frontal gyrus than people with little-to-no opioid usage. Consistent with our previous studies, findings suggest that high levels of NSAID use in older individuals may promote A42 accumulation in cerebral cortex.

View details for PubMedID 29226863

View details for PubMedCentralID PMC5745256

Exposure to Strong Anticholinergic Medications and Dementia-Related Neuropathology in a Community-Based Autopsy Cohort JOURNAL OF ALZHEIMERS DISEASE Gray, S. L., Anderson, M. L., Hanlon, J. T., Dublin, S., Walker, R. L., Hubbard, R. A., Yu, O., Montine, T. J., Crane, P. K., Sonnen, J. A., Keene, C., Larson, E. B. 2018; 65 (2): 60716

Abstract

Anticholinergic medication exposure has been associated with increased risk for dementia. No study has examined the association between anticholinergic medication use and neuropathologic lesions in a community-based sample.To examine the relationship between anticholinergic exposure and dementia-related neuropathologic changes.Within a community-based autopsy cohort (N=420), we ascertained use of anticholinergic medications over a 10-year period from automated pharmacy data and calculated total standardized daily doses (TSDD). We used modified Poisson regression to calculate adjusted relative risks (RRs) and 95% confidence intervals (CIs) for the association between anticholinergic exposure and dementia-associated neuropathology. Inverse probability weighting was used to account for selection into the autopsy cohort.Heavy anticholinergic exposure (1,096 TSDD) was not associated with greater neuropathologic changes of Alzheimer's disease; the adjusted RRs for heavy use of anticholinergics (1,096 TSDD) compared to no use were 1.22 (95% CI 0.81-1.88) for neuritic plaque scores and 0.89 (0.47-1.66) for extent of neurofibrillary degeneration. Moderate (91-1,095 TSDD) and heavy use of anticholinergics was associated with a significantly lower cerebral microinfarct burden compared with no use with adjusted RRs of 0.44 (0.21-0.89) and 0.24 (0.09-0.62), respectively. Anticholinergic exposure was not associated with macroscopic infarcts or atherosclerosis.Use of anticholinergic medications is not associated with Alzheimer's disease-related neuropathologic changes but is associated with lower cerebral microinfarct burden. Further research into biological mechanisms underlying the anticholinergic-dementia link is warranteds.

View details for DOI 10.3233/JAD-171174

View details for Web of Science ID 000442247800019

View details for PubMedID 30056417

Alzheimer's Disease Sequencing Project discovery and replication criteria for cases and controls: Data from a community-based prospective cohort study with autopsy follow-up ALZHEIMERS & DEMENTIA Crane, P. K., Foroud, T., Montine, T. J., Larson, E. B. 2017; 13 (12): 141013
Homocysteine and cognitive function in Parkinson's disease PARKINSONISM & RELATED DISORDERS Licking, N., Murchison, C., Cholerton, B., Zabetian, C. P., Hu, S., Montine, T. J., Peterson-Hiller, A. L., Chung, K. A., Edwards, K., Leverenz, J. B., Quinn, J. F. 2017; 44: 15

Abstract

Increased plasma homocysteine (HC) is a risk factor for dementia in the general population. Levodopa therapy causes increased plasma HC, but it remains unclear whether elevated plasma HC is associated with cognitive impairment in Parkinson's disease (PD).The study population includes all participants in the Pacific Northwest Udall Center (PANUC) Clinical cohort at the time of the study, consisting of 294 individuals with PD who had a standardized neuropsychological assessment and plasma collection for HC measurement. We tested the hypothesis that elevated plasma HC is inversely related to cognitive function in patients with PD.As expected, plasma HC was positively associated with age, disease duration, disease severity, and levodopa usage, while cognitive function was associated with age, education, gender, and APOE genotype, so subsequent analyses controlled for these covariates. When plasma HC was dichotomized as normal (<14mol/L) or elevated (14mol/L), subjects with hyper-homocysteinemia had lower scores on Digit Symbol (p=0.031), Hopkins Verbal Learning Task (HVLT) Delayed Recall (p=0.004), and semantic verbal fluency (p=0.049). When examined as a continuous variable, plasma HC was inversely associated with HVLT Delayed Recall (p=0.009)) and semantic verbal fluency (p=0.004), but was not significantly related to Digit symbol, Trail-making test, Judgment of Line Orientation, phonemic verbal fluency, MMSE, or MOCA. When analysis was restricted to non-demented subjects (n=231), the findings were unchanged.We conclude that plasma HC is significantly associated with some aspects of cognitive function in PD, and may represent a treatable risk factor for cognitive decline in PD.

View details for PubMedID 28807493

View details for PubMedCentralID PMC5858907

Traumatic brain injury may not increase the risk of Alzheimer disease NEUROLOGY Weiner, M. W., Crane, P. K., Montine, T. J., Bennett, D. A., Veitch, D. P. 2017; 89 (18): 192325

Abstract

Traumatic brain injury (TBI) commonly occurs in civilian and military populations. Some epidemiologic studies previously have associated TBI with an increased risk of Alzheimer disease (AD). Recent clinicopathologic and biomarker studies have failed to confirm the relationship of TBI to the development of AD dementia or pathologic changes, and suggest that other neurodegenerative processes might be linked to TBI. Additional studies are required to determine the long-term consequences of TBI.

View details for PubMedID 28978654

View details for PubMedCentralID PMC5664292

Systems biology approach to late-onset Alzheimer's disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments ALZHEIMERS & DEMENTIA Mukherjee, S., Russell, J. C., Carr, D. T., Burgess, J. D., Allen, M., Serie, D. J., Boehme, K. L., Kauwe, J. K., Naj, A. C., Fardo, D. W., Dickson, D. W., Montine, T. J., Ertekin-Taner, N., Kaeberlein, M. R., Crane, P. K. 2017; 13 (10): 113342

Abstract

We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci.We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans A proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions.We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with A toxicity, and NDUFS3, SLC25A11, ATP5H, and APP were differentially expressed in the temporal cortex.Network analyses identified novel LOAD candidate genes. We demonstrated a functional role for four of these in a C. elegans model and found enrichment of differentially expressed genes in the temporal cortex.

View details for DOI 10.1016/j.jalz.2017.01.016

View details for Web of Science ID 000412687700008

View details for PubMedID 28242297

View details for PubMedCentralID PMC5568992

Resistance to Alzheimer Disease Neuropathologic Changes and Apparent Cognitive Resilience in the Nun and Honolulu-Asia Aging Studies. Journal of neuropathology and experimental neurology Latimer, C. S., Keene, C. D., Flanagan, M. E., Hemmy, L. S., Lim, K. O., White, L. R., Montine, K. S., Montine, T. J. 2017; 76 (6): 458-466

Abstract

Two population-based studies key to advancing knowledge of brain aging are the Honolulu-Asia Aging Study (HAAS) and the Nun Study. Harmonization of their neuropathologic data allows cross comparison, with findings common to both studies likely generalizable, while distinct observations may point to aging brain changes that are dependent on sex, ethnicity, environment, or lifestyle factors. Here, we expanded the neuropathologic evaluation of these 2 studies using revised NIA-Alzheimer's Association guidelines and compared directly the neuropathologic features of resistance and apparent cognitive resilience. There were significant differences in prevalence of Alzheimer disease neuropathologic change, small vessel vascular brain injury, and Lewy body disease between these 2 studies, suggesting that sex, ethnicity, and lifestyle factors may significantly influence resistance to developing brain injury with age. In contrast, hippocampal sclerosis prevalence was very similar, but skewed to poorer cognitive performance, suggesting that hippocampal sclerosis could act sequentially with other diseases to impair cognitive function. Strikingly, despite these observed differences, the proportion of individuals resistant to all 4 diseases of brain or displaying apparent cognitive resilience was virtually identical between HAAS and Nun Study participants. Future in vivo validation of these results awaits comprehensive biomarkers of these 4 brain diseases.

View details for DOI 10.1093/jnen/nlx030

View details for PubMedID 28499012

Total Brain and Hippocampal Volumes and Cognition in Older American Indians: The Strong Heart Study ALZHEIMER DISEASE & ASSOCIATED DISORDERS Cholerton, B., Omidpanah, A., Madhyastha, T. M., Grabowski, T. J., Suchy-Dicey, A. M., Shibata, D. K., Nelson, L. A., Verney, S. P., Howard, B. V., Longstreth, W. T., Montine, T. J., Buchwald, D. 2017; 31 (2): 94-100

Abstract

Estimates of hippocampal volume by magnetic resonance imaging have clinical and cognitive correlations and can assist in early Alzheimer disease diagnosis. However, little is known about the relationship between global or regional brain volumes and cognitive test performance in American Indians.American Indian participants (N=698; median age, 72 y) recruited for the Cerebrovascular Disease and its Consequences in American Indians study, an ancillary study of the Strong Heart Study cohort, were enrolled. Linear regression models assessed the relationship between magnetic resonance imaging brain volumes (total brain and hippocampi) and cognitive measures of verbal learning and recall, processing speed, verbal fluency, and global cognition.After controlling for demographic and clinical factors, all volumetric measurements were positively associated with processing speed. Total brain volume was also positively associated with verbal learning, but not with verbal recall. Conversely, left hippocampal volume was associated with both verbal learning and recall. The relationship between hippocampal volume and recall performance was more pronounced among those with lower scores on a global cognitive measure. Controlling for APOE 4 did not substantively affect the associations.These results support further investigation into the relationship between structural Alzheimer disease biomarkers, cognition, genetics, and vascular risk factors in aging American Indians.

View details for DOI 10.1097/WAD.0000000000000203

View details for Web of Science ID 000401899300002

View details for PubMedID 28538087

Regulatory region genetic variation is associated with FYN expression in Alzheimer's disease. Neurobiology of aging Zahratka, J. A., Shao, Y., Shaw, M., Todd, K., Formica, S. V., Khrestian, M., Montine, T., Leverenz, J. B., Bekris, L. M. 2017; 51: 43-53

Abstract

Neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau, are a key pathologic feature of Alzheimer's disease (AD). Tau phosphorylation is under the control of multiple kinases and phosphatases, including Fyn. Previously, our group found an association between 2 regulatory single nucleotide polymorphisms in the FYN gene with increased tau levels in the cerebrospinal fluid. In this study, we hypothesized that Fyn expression in the brain is influenced by AD status and genetic content. We found that Fyn protein, but not messenger RNA, levels were increased in AD patients compared to cognitively normal controls and are associated with regulatory region single nucleotide polymorphisms. In addition, the expression of the FYN 3'UTR can decrease expression in multiple cell lines, suggesting this regulatory region plays an important role in FYN expression. Taken together, these data suggest that FYN expression is regulated according to AD status and regulatory region haplotype, and genetic variants may be instrumental in the development of neurofibrillary tangles in AD and other tauopathies.

View details for DOI 10.1016/j.neurobiolaging.2016.11.001

View details for PubMedID 28033507

View details for PubMedCentralID PMC5358011

Human Striatal Dopaminergic and Regional Serotonergic Synaptic Degeneration with Lewy Body Disease and Inheritance of APOE e4. American journal of pathology Postupna, N., Latimer, C. S., Larson, E. B., Sherfield, E., Paladin, J., Shively, C. A., Jorgensen, M. J., Andrews, R. N., Kaplan, J. R., Crane, P. K., Montine, K. S., Craft, S., Keene, C. D., Montine, T. J. 2017

Abstract

Cognitive impairment in older individuals is a complex trait that in population-based studies most commonly derives from an individually varying mixture of Alzheimer disease, Lewy body disease, and vascular brain injury. We investigated the molecular composition of synaptic particles from three sources: consecutive rapid autopsy brains from the Adult Changes in Thought Study, a population-based cohort; four aged nonhuman primate brains optimally processed for molecular investigation; and targeted replacement transgenic mice homozygous for APOE 4. Our major goal was to characterize the molecular composition of human synaptic particles in regions of striatum and prefrontal cortex. We performed flow cytometry to measure six markers of synaptic subtypes, as well as amyloid 42 and paired helical filament tau. Our results showed selective degeneration of dopaminergic terminals throughout the striatum in individuals with Lewy body disease, and serotonergic degeneration in human ventromedial caudate nucleus from individuals with an APOE 4 allele. Similar results were seen in mouse caudate nucleus homozygous for APOE 4 via targeted replacement. Together, extension of these clinical, pathologic, and genetic associations from tissue to the synaptic compartment of cerebral cortex and striatum strongly supports our approach for accurately observing the molecular composition of human synapses by flow cytometry.

View details for DOI 10.1016/j.ajpath.2016.12.010

View details for PubMedID 28212814

View details for PubMedCentralID PMC5397713

Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimer's & dementia : the journal of the Alzheimer's Association Jun, G. R., Chung, J., Mez, J., Barber, R., Beecham, G. W., Bennett, D. A., Buxbaum, J. D., Byrd, G. S., Carrasquillo, M. M., Crane, P. K., Cruchaga, C., De Jager, P., Ertekin-Taner, N., Evans, D., Fallin, M. D., Foroud, T. M., Friedland, R. P., Goate, A. M., Graff-Radford, N. R., Hendrie, H., Hall, K. S., Hamilton-Nelson, K. L., Inzelberg, R., Kamboh, M. I., Kauwe, J. S., Kukull, W. A., Kunkle, B. W., Kuwano, R., Larson, E. B., Logue, M. W., Manly, J. J., Martin, E. R., Montine, T. J., Mukherjee, S., Naj, A., Reiman, E. M., Reitz, C., Sherva, R., St George-Hyslop, P. H., Thornton, T., Younkin, S. G., Vardarajan, B. N., Wang, L., Wendlund, J. R., Winslow, A. R., Haines, J., Mayeux, R., Pericak-Vance, M. A., Schellenberg, G., Lunetta, K. L., Farrer, L. A. 2017

Abstract

Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood.We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset.Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P<5 10(-8)) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE 4 allele with NFIC SNP. We also obtained GWS evidence (P<2.7 10(-6)) for gene-based association in the total sample with a novel locus, TPBG (P=1.8 10(-6)).Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci.

View details for DOI 10.1016/j.jalz.2016.12.012

View details for PubMedID 28183528

Performance of a Condensed Protocol That Reduces Effort and Cost of NIA-AA Guidelines for Neuropathologic Assessment of Alzheimer Disease. Journal of neuropathology and experimental neurology Flanagan, M. E., Marshall, D. A., Shofer, J. B., Montine, K. S., Nelson, P. T., Montine, T. J., Keene, C. D. 2017

Abstract

Concerns regarding resource expenditures have been expressed about the 2012 NIA-AA Sponsored Guidelines for neuropathologic assessment of Alzheimer disease (AD) and related dementias. Here, we investigated a cost-reducing Condensed Protocol and its effectiveness in maintaining the diagnostic performance of Guidelines in assessing AD, Lewy body disease (LBD), microvascular brain injury, hippocampal sclerosis (HS), and congophilic amyloid angiopathy (CAA). The Condensed Protocol consolidates the same 20 regions into 5 tissue cassettes at 75% lower cost. A 28 autopsy brain-retrospective cohort was selected for varying levels of neuropathologic features in the Guidelines (Original Protocol), as well as an 18 consecutive autopsy brain prospective cohort. Three neuropathologists at 2 sites performed blinded evaluations of these cases. Lesion specificity was similar between Original and Condensed Protocols. Sensitivities for AD neuropathologic change, LBD, HS, and CAA were not substantially impacted by the Condensed Protocol, whereas sensitivity for microvascular lesions (MVLs) was decreased. Specificity for CAA was decreased using the Condensed Protocol when compared with the Original Protocol. Our results show that the Condensed Protocol is a viable alternative to the NIA-AA guidelines for AD neuropathologic change, LBD, and HS, but not MVLs or CAA, and may be a practical alternative in some practice settings.

View details for DOI 10.1093/jnen/nlw104

View details for PubMedID 28062571

Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis LANCET NEUROLOGY Irwin, D., Grossman, M., Weintraub, D., Hurtig, H. I., Duda, J. E., Xie, S. X., Lee, E. B., Van Deerlin, V. M., Lopez, O. L., Kofler, J. K., Nelson, P. T., Jicha, G. A., Woltjer, R., Quinn, J. F., Kaye, J., Leverenz, J. B., Tsuang, D., Longfellow, K., Yearout, D., Kukull, W., Keene, C. D., Montine, T. J., Zabetian, C. P., Trojanowski, J. Q. 2017; 16 (1): 55-65

Abstract

Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies.In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of tau neurofibrillary tangles, neuritic plaques, -synuclein inclusions, and other pathological changes in cortical regions. These samples were graded on an ordinal scale and genotyped for variants associated with synucleinopathies. We assessed the interval from onset of motor symptoms to onset of dementia, and overall survival in groups with varying levels of comorbid Alzheimer's disease pathology according to US National Institute on Aging-Alzheimer's Association neuropathological criteria, and used multivariate regression to control for age at death and sex.On the basis of data from 213 patients who had been followed up to autopsy and met inclusion criteria of Lewy body disorder with autopsy-confirmed synucleinopathy, we identified 49 (23%) patients with no Alzheimer's disease neuropathology, 56 (26%) with low-level Alzheimer's disease neuropathology, 45 (21%) with intermediate-level Alzheimer's disease neuropathology, and 63 (30%) with high-level Alzheimer's disease neuropathology. As levels of Alzheimer's disease neuropathology increased, cerebral -synuclein scores were higher, and the interval between onset of motor and dementia symptoms and disease duration was shorter (p<00001 for all comparisons). Multivariate regression showed independent negative associations of cerebral tau neurofibrillary tangles score with the interval between onset of motor and dementia symptoms ( -40, 95% CI -55 to -26; p<00001; R(2) 022, p<00001) and with survival (-20, -32 to -08; 0003; 015, <00001) in models that included age at death, sex, cerebral neuritic plaque scores, cerebral -synuclein scores, presence of cerebrovascular disease, MAPT haplotype, and APOE genotype as covariates.Alzheimer's disease neuropathology is common in synucleinopathies and confers a worse prognosis for each increasing level of neuropathological change. Cerebral neurofibrillary tangles burden, in addition to -synuclein pathology and amyloid plaque pathology, are the strongest pathological predictors of a shorter interval between onset of motor and dementia symptoms and survival. Diagnostic criteria based on reliable biomarkers for Alzheimer's disease neuropathology in synucleinopathies should help to identify the most appropriate patients for clinical trials of emerging therapies targeting tau, amyloid- or synuclein, and to stratify them by level of Alzheimer's disease neuropathology.US National Institutes of Health (National Institute on Aging and National Institute of Neurological Disorders and Stroke).

View details for PubMedID 27979356

Neuropathological Comparison of Adult Onset and Juvenile Huntington's Disease with Cerebellar Atrophy: A Report of a Father and Son JOURNAL OF HUNTINGTONS DISEASE Latimer, C. S., Flanagan, M. E., Cimino, P. J., Jayadev, S., Davis, M., Hoffer, Z. S., Montine, T. J., Gonzalez-Cuyar, L. F., Bird, T. D., Keene, C. 2017; 6 (4): 33748

Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in huntingtin (HTT) on chromosome 4. Anticipation can cause longer repeat expansions in children of HD patients. Juvenile Huntington's disease (JHD), defined as HD arising before age 20, accounts for 5-10% of HD cases, with cases arising in the first decade accounting for approximately 1%. Clinically, JHD differs from the predominately choreiform adult onset Huntington's disease (AOHD) with variable presentations, including symptoms such as myoclonus, seizures, Parkinsonism, and cognitive decline.The neuropathologic changes of AOHD are well characterized, but there are fewer reports that describe the neuropathology of JHD. Here we report a case of a six-year-old boy with paternally-inherited JHD caused by 169 CAG trinucleotide repeats who presented at age four with developmental delay, dysarthria, and seizures before dying at age 6. The boy's clinical presentation and neuropathological findings are directly compared to those of his father, who presented with AOHD and 54 repeats.A full autopsy was performed for the JHD case and a brain-only autopsy was performed for the AOHD case. Histochemically- and immunohistochemically-stained slides were prepared from formalin-fixed, paraffin-embedded tissue sections.Both cases had neuropathology corresponding to Vonsattel grade 3. The boy also had cerebellar atrophy with huntingtin-positive inclusions in the cerebellum, findings not present in the father.Autopsies of father and son provide a unique opportunity to compare and contrast the neuropathologic findings of juvenile and adult onset HD while also providing the first immunohistochemical evidence of cerebellar involvement in JHD. Additionally this is the first known report to include findings from peripheral tissue in a case of JHD.

View details for DOI 10.3233/JHD-170261

View details for Web of Science ID 000418646200004

View details for PubMedID 29036832

View details for PubMedCentralID PMC5832043

Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer's Disease Biomarkers: A Pilot Clinical Trial JOURNAL OF ALZHEIMERS DISEASE Craft, S., Claxton, A., Baker, L. D., Hanson, A. J., Cholerton, B., Trittschuh, E. H., Dahl, D., Caulder, E., Neth, B., Montine, T. J., Jung, Y., Maldjian, J., Whitlow, C., Friedman, S. 2017; 57 (4): 1325-1334

Abstract

Long acting insulin detemir administered intranasally for three weeks enhanced memory for adults with Alzheimer's disease dementia (AD) or amnestic mild cognitive impairment (MCI). The investigation of longer-term administration is necessary to determine whether benefits persist, whether they are similar to benefits provided by regular insulin, and whether either form of insulin therapy affects AD biomarkers.The present study aimed to determine whether four months of treatment with intranasal insulin detemir or regular insulin improves cognition, daily functioning, and AD biomarkers for adults with MCI or AD.This randomized, double-blind, placebo-controlled trial included an intent-to-treat sample consisting of 36 adults diagnosed with MCI or mild to moderate AD. Participants received placebo (n=12), 40 IU of insulin detemir (n=12), or 40 IU of regular insulin (n=12) daily for four months, administered with a nasal delivery device. A cognitive battery was administered at baseline and after two and four months of treatment. MRI was administered for all participants and lumbar puncture for a subset (n=20) at baseline and four months. The primary outcome was change from baseline to four months on a memory composite (sum of Z scores for delayed list and story recall). Secondary outcomes included: global cognition (Alzheimer's Disease Assessment Scale-Cognition), daily functioning (Dementia Severity Rating Scale), MRI volume changes in AD-related regions of interest, and cerebrospinal fluid AD markers.The regular insulin treated group had better memory after two and four months compared with placebo (p<0.03). No significant effects were observed for the detemir-assigned group compared with the placebo group, or for daily functioning for either group. Regular insulin treatment was associated with preserved volume on MRI. Regular insulin treatment was also associated with reduction in the tau-P181/A42 ratio.Future research is warranted to examine the mechanistic basis of treatment differences, and to further assess the efficacy and safety of intranasal insulin.

View details for DOI 10.3233/JAD-161256

View details for Web of Science ID 000399933800028

View details for PubMedID 28372335

Use of Analgesics (Opioids and Nonsteroidal Anti-Inflammatory Drugs) and Dementia-Related Neuropathology in a Community-Based Autopsy Cohort. Journal of Alzheimer's disease : JAD Dublin, S., Walker, R. L., Gray, S. L., Hubbard, R. A., Anderson, M. L., Yu, O., Montine, T. J., Crane, P. K., Sonnen, J. A., Larson, E. B. 2017; 58 (2): 435-448

Abstract

Opioids may influence the development of Alzheimer's disease (AD). Some studies have observed AD pathology in the brains of opioid abusers. No study has examined the association between prescription opioid use and dementia-related neuropathologic changes.To examine the relationship between prescription opioid or NSAID use and dementia-related neuropathologic changes.Within a community-based autopsy cohort (N=420), we ascertained opioid and nonsteroidal anti-inflammatory drug (NSAID) use over a 10-year period from automated pharmacy data and calculated total standardized daily doses (TSDDs). A neuropathologist assessed outcomes including neuritic plaques, neurofibrillary tangles, and macroscopic infarcts. Outcome measures were dichotomized using established cutpoints. We used modified Poisson regression to calculate adjusted relative risks (RR) and 95% confidence intervals (CI), accounting for participant characteristics and using weighting to account for possible selection bias related to selection into the autopsy sample.Heavier opioid exposure was not associated with greater neuropathologic changes. For neuritic plaques, the adjusted RR [95% CI] was 0.99 [0.64-1.47] for 91+ TSDDs of opioids versus little to no use, and for neurofibrillary tangles, 0.97 [0.49-1.78]. People with heavy NSAID use had higher risk of neuritic plaques (RR 1.39 [1.01-1.89]) than those with little to no use, as we have previously reported. Neither opioid nor NSAID use was associated with higher risk of macroscopic infarcts or with Lewy body disease.Prescription opioid use is not associated with dementia-related neuropathologic changes, but heavy NSAID use may be. More research is needed examining chronic pain, its pharmacologic treatments, and neuropathologic changes.

View details for DOI 10.3233/JAD-160374

View details for PubMedID 28453469

Type 2 Diabetes, Cognition, and Dementia in Older Adults: Toward a Precision Health Approach. Diabetes spectrum : a publication of the American Diabetes Association Cholerton, B., Baker, L. D., Montine, T. J., Craft, S. 2016; 29 (4): 210-219

Abstract

IN BRIEF There has been a concurrent dramatic rise in type 2 diabetes and dementia in the United States, and type 2 diabetes shares common genetic and environmental risk factors and underlying pathology with both vascular and Alzheimer's dementias. Given the ability to identify this at-risk population and a variety of potential targeted treatments, type 2 diabetes represents a promising focus for a precision health approach to reduce the impact of cognitive decline and dementia in older adults.

View details for PubMedID 27899872

Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015 LANCET Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coates, M. M., Coggeshall, M., Dandona, L., Dicker, D. J., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Foreman, K., Forouzanfar, M. H., Fraser, M. S., Pullman, N., Gething, P. W., Goldberg, E. M., Graetz, N., Haagsma, J. A., Hay, S. I., Huynh, C., Johnson, C., Kassebaum, N. J., Kinfu, Y., Kulikoff, X. R., Kutz, M., Kyu, H. H., Larson, H. J., Leung, J., Liang, X., Lim, S. S., Lind, M., Lozano, R., Marquez, N., Mensah, G. A., Mikesell, J., Mokdad, A. H., Mooney, M. D., Nguyen, G., Nsoesie, E., Pigott, D. M., Pinho, C., Roth, G. A., Salomon, J. A., Sandar, L., Silpakit, N., Sligar, A., Sorensen, R. J., Stanaway, J., Steiner, C., Teeple, S., Thomas, B. A., Troeger, C., VanderZanden, A., Vollset, S. E., Wanga, V., Whiteford, H. A., Wolock, T., Zoeckler, L., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abera, S. F., Abreu, D. M., Abu-Raddad, L. J., Abyu, G. Y., Achoki, T., Adelekan, A. L., Ademi, Z., Adou, A. K., Adsuar, J. C., Afanvi, K. A., Afshin, A., Agardh, E. E., Agarwal, A., Agrawal, A., Kiadaliri, A. A., Ajala, O. N., Akanda, A. S., Akinyemi, R. O., Akinyemiju, T. F., Akseer, N., Al Lami, F. H., Alabed, S., Al-Aly, Z., Alam, K., Alam, N. K., Alasfoor, D., Aldhahri, S. F., Aldridge, R. W., Alegretti, M. A., Aleman, A. V., Alemu, Z. A., Alexander, L. T., Alhabib, S., Ali, R., Alkerwi, A., Alla, F., Allebeck, P., Al-Raddadi, R., Alsharif, U., Altirkawi, K. A., Martin, E. A., Alvis-Guzman, N., Amare, A. T., Amegah, A. K., Ameh, E. A., Amini, H., Ammar, W., Amrock, S. M., Andersen, H. H., Anderson, B., Anderson, G. M., Antonio, C. A., Aregay, A. F., Arnlov, J., Arsenijevic, V. S., Al Artaman, Asayesh, H., Asghar, R. J., Atique, S., Arthur Avokpaho, E. F., Awasthi, A., Azzopardi, P., Bacha, U., Badawi, A., Bahit, M. C., Balakrishnan, K., Banerjee, A., Barac, A., Barker-Collo, S. L., Barnighausen, T., Barregard, L., Barrero, L. H., Basu, A., Basu, S., Bayou, Y. T., Bazargan-Hejazi, S., Beardsley, J., Bedi, N., Beghi, E., Belay, H. A., Bell, B., Bell, M. L., Bello, A. K., Bennett, D. A., Bensenor, I. M., Berhane, A., Bernabe, E., Betsu, B. D., Beyene, A. S., Bhala, N., Bhalla, A., Biadgilign, S., Bikbov, B., Bin Abdulhak, A. A., Biroscak, B. J., Biryukov, S., Bjertness, E., Blore, J. D., Blosser, C. D., Bohensky, M. A., Borschmann, R., Bose, D., Bourne, R. R., Brainin, M., Brayne, C. E., Brazinova, A., Breitborde, N. J., Brenner, H., Brewer, J. D., Brown, A., Brown, J., Brugha, T. S., Buckle, G. C., Butt, Z. A., Calabria, B., Campos-Novato, I. R., Campuzano, J. C., Carapetis, J. R., Cardenas, R., Carpenter, D., Carrero, J. J., Castaneda-Oquela, C. A., Rivas, J. C., Catala-Lopez, F., Cavalleri, F., Cercy, K., Cerda, J., Chen, W., Chew, A., Chiang, P. P., Chibalabala, M., Chibueze, C. E., Chimed-Ochir, O., Chisumpa, V. H., Choi, J. J., Chowdhury, R., Christensen, H., Christopher, D. J., Ciobanu, L. G., Cirillo, M., Cohen, A. J., Colistro, V., Colomar, M., Colquhoun, S. M., Cooper, C., Cooper, L. T., Cortinovis, M., Cowie, B. C., Crump, J. A., Damsere-Derry, J., Danawi, H., Dandona, R., Daoud, F., Darby, S. C., Dargan, P. I., das Neves, J., Davey, G., Davis, A. C., Davitoiu, D. V., de Castro, E. F., de Jager, P., De Leo, D., Degenhardt, L., Dellavalle, R. P., Deribe, K., Deribew, A., Dharmaratne, S. D., Dhillon, P. K., Diaz-Torne, C., Ding, E. L., dos Santos, K. P., Dossou, E., Driscoll, T. R., Duan, L., Dubey, M., Bartholow, B., Ellenbogen, R. G., Lycke, C., Elyazar, I., Endries, A. Y., Ermakov, S. P., Eshrati, B., Esteghamati, A., Estep, K., Faghmous, I. D., Fahimi, S., Jose, E., Farid, T. A., Sa Farinha, C. S., Faro, A., Farvid, M. S., Farzadfar, F., Feigin, V. L., Fereshtehnejad, S., Fernandes, J. G., Fernandes, J. C., Fischer, F., Fitchett, J. R., Flaxman, A., Foigt, N., Fowkes, F. G., Franca, E. B., Franklin, R. C., Friedman, J., Frostad, J., Hirst, T., Futran, N. D., Gall, S. L., Gambashidze, K., Gamkrelidze, A., Ganguly, P., Gankpe, F. G., Gebre, T., Gebrehiwot, T. T., Gebremedhin, A. T., Gebru, A. A., Geleijnse, J. M., Gessner, B. D., Ghoshal, A. G., Gibney, K. B., Gillum, R. F., Gilmour, S., Giref, A. Z., Giroud, M., Gishu, M. D., Giussani, G., Glaser, E., Godwin, W. W., Gomez-Dantes, H., Gona, P., Goodridge, A., Gopalani, S. V., Gosselin, R. A., Gotay, C. C., Goto, A., Gouda, H. N., Greaves, F., Gugnani, H. C., Gupta, R., Gupta, R., Gupta, V., Gutierrez, R. A., Hafezi-Nejad, N., Haile, D., Hailu, A. D., Hailu, G. B., Halasa, Y. A., Hamadeh, R. R., Hamidi, S., Hancock, J., Handal, A. J., Hankey, G. J., Hao, Y., Harb, H. L., Harikrishnan, S., Haro, J. M., Havmoeller, R., Heckbert, S. R., Heredia-Pi, I. B., Heydarpour, P., Hilderink, H. B., Hoek, H. W., Hogg, R. S., Horino, M., Horita, N., Hosgood, H. D., Hotez, P. J., Hoy, D. G., Hsairi, M., Htet, A. S., Than Htike, M. M., Hu, G., Huang, C., Huang, H., Huiart, L., Husseini, A., Huybrechts, I., Huynh, G., Iburg, K. M., Innos, K., Inoue, M., Iyer, V. J., Jacobs, T. A., Jacobsen, K. H., Jahanmehr, N., Jakovljevic, M. B., James, P., Javanbakht, M., Jayaraman, S. P., Jayatilleke, A. U., Jeemon, P., Jensen, P. N., Jha, V., Jiang, G., Jiang, Y., Jibat, T., Jimenez-Corona, A., Jonas, J. B., Joshi, T. K., Kabir, Z., Karnak, R., Kan, H., Kant, S., Karch, A., Karema, C. K., Karimkhani, C., Karletsos, D., Karthikeyan, G., Kasaeian, A., Katibeh, M., Kaul, A., Kawakami, N., Kayibanda, J. F., Keiyoro, P. N., Kemmer, L., Kemp, A. H., Kengne, A. P., Keren, A., Kereselidze, M., Kesavachandran, C. N., Khader, Y. S., Khalil, I. A., Khan, A. R., Khan, E. A., Khang, Y., Khera, S., Muthafer Khoja, T. A., Kieling, C., Kim, D., Kim, Y. J., Kissela, B. M., Kissoon, N., Knibbs, L. D., Knudsen, A. K., Kokubo, Y., Kolte, D., Kopec, J. A., Kosen, S., Koul, P. A., Koyanagi, A., Krog, N. H., Defo, B. K., Bicer, B. K., Kudom, A. A., Kuipers, E. J., Kulkarni, V. S., Kumar, G. A., Kwan, G. F., Lal, A., Lal, D. K., Lalloo, R., Lam, H., Lam, J. O., Langan, S. M., Lansingh, V. C., Larsson, A., Laryea, D. O., Latif, A. A., Lawrynowicz, A. E., Leigh, J., Levi, M., Li, Y., Lindsay, M. P., Lipshultz, S. E., Liu, P. Y., Liu, S., Liu, Y., Lo, L., Logroscino, G., Lotufo, P. A., Lucas, R. M., Lunevicius, R., Lyons, R. A., Ma, S., Pedro Machado, V. M., Mackay, M. T., Maclachlan, J. H., Abd El Razek, H. M., Abd El Razek, M. M., Majdan, M., Majeed, A., Malekzadeh, R., Ayele Manamo, W. A., Mandisarisa, J., Mangalam, S., Mapoma, C. C., Marcenes, W., Margolis, D. J., Martin, G. R., Martinez-Raga, J., Marzan, M. B., Masiye, F., Mason-Jones, A. J., Massano, J., Matzopoulos, R., Mayosi, B. M., McGarvey, S. T., McGrath, J. J., McKee, M., McMahon, B. J., Meaney, P. A., Mehari, A., Mehndiratta, M. M., Mena-Rodriguez, F., Mekonnen, A. B., Melaku, Y. A., Memiah, P., Memish, Z. A., Mendoza, W., Meretoja, A., Meretoja, T. J., Mhimbira, F. A., Micha, R., Miller, T. R., Mirarefin, M., Misganaw, A., Mock, C. N., Abdulmuhsin Mohammad, K., Mohammadi, A., Mohammed, S., Mohan, V., Mola, G. L., Monasta, L., Montanez Hernandez, J. C., Montero, P., Montico, M., Montine, T. J., Moradi-Lakeh, M., Morawska, L., Morgan, K., Mori, R., Mozaffarian, D., Mueller, U., Satyanarayana Murthy, G. V., Murthy, S., Musa, K. I., Nachega, J. B., Nagel, G., Naidoo, K. S., Naik, N., Naldi, L., Nangia, V., Nash, D., Nejjari, C., Neupane, S., Newton, C. R., Newton, J. N., Ng, M., Ngalesoni, F. N., Ngirabega, J. d., Quyen Le Nguyen, Q., Nisar, M. I., Nkamedjie Pete, P. M., Nomura, M., Norheim, O. F., Norman, P. E., Norrving, B., Nyakarahuka, L., Ogbo, F. A., Ohkubo, T., Ojelabi, F. A., Olivares, P. R., Olusanya, B. O., Olusanya, J. O., Opio, J. N., Oren, E., Ortiz, A., Osman, M., Ota, E., Ozdemir, R., Pa, M., Pandian, J. D., Pant, P. R., Papachristou, C., Park, E., Park, J., Parry, C. D., Parsaeian, M., Caicedo, A. J., Patten, S. B., Patton, G. C., Paul, V. K., Pearce, N., Pedro, J. M., Stokic, L. P., Pereira, D. M., Perico, N., Pesudovs, K., Petzold, M., Phillips, M. R., Piel, F. B., Pillay, J. D., Plass, D., Platts-Mills, J. A., Polinder, S., Pope, C. A., Popova, S., Poulton, R. G., Pourmalek, F., Prabhakaran, D., Qorbani, M., Quame-Amaglo, J., Quistberg, D. A., Rafay, A., Rahimi, K., Rahimi-Movaghar, V., Rahman, M., Rahman, M. H., Rahman, S. u., Rai, R. K., Rajavi, Z., Rajsic, S., Raju, M., Rakovac, I., Rana, S. M., Ranabhat, C. L., Rangaswamy, T., Rao, P., Rao, S. R., Refaat, A. H., Rehm, J., Reitsma, M. B., Remuzzi, G., Resnikofff, S., Ribeiro, A. L., Ricci, S., Blancas, M. J., Roberts, B., Roca, A., Rojas-Rueda, D., Ronfani, L., Roshandel, G., Rothenbacher, D., Roy, A., Roy, N. K., Ruhago, G. M., Sagar, R., Saha, S., Sahathevan, R., Saleh, M. M., Sanabria, J. R., Sanchez-Nino, M. D., Sanchez-Riera, L., Santos, I. S., Sarmiento-Suarez, R., Sartorius, B., Satpathy, M., Savic, M., Sawhney, M., Schaub, M. P., Schmidt, M. I., Schneider, I. J., Schottker, B., Schutte, A. E., Schwebel, D. C., Seedat, S., Sepanlou, S. G., Servan-Mori, E. E., Shackelford, K. A., Shaddick, G., Shaheen, A., Shahraz, S., Shaikh, M. A., Shakh-Nazarova, M., Sharma, R., She, J., Sheikhbahaei, S., Shen, J., Shen, Z., Shepard, D. S., Sheth, K. N., Shetty, B. P., Shi, P., Shibuya, K., Shin, M., Shiri, R., Shiue, I., Shrime, M. G., Sigfusdottir, I. D., Silberberg, D. H., Silva, D. A., Silveira, D. G., Silverberg, J. I., Simard, E. P., Singh, A., Singh, G. M., Singh, J. A., Singh, O. P., Singh, P. K., Singh, V., Soneji, S., Soreide, K., Soriano, J. B., Sposato, L. A., Sreeramareddy, C. T., Stathopoulou, V., Stein, D. J., Stein, M. B., Stranges, S., Stroumpoulis, K., Sunguya, B. F., Sur, P., Swaminathan, S., Sykes, B. L., Szoeke, C. E., Tabares-Seisdedos, R., Tabb, K. M., Takahashi, K., Takala, J. S., Talongwa, R. T., Tandon, N., Tavakkoli, M., Taye, B., Taylor, H. R., Ao, B. J., Tedla, B. A., Tefera, W. M., ten Have, M., Terkawi, A. S., Tesfay, F. H., Tessema, G. A., Thomson, A. J., Thorne-Lyman, A. L., Thrift, A. G., Thurston, G. D., Tillmann, T., Tirschwell, D. L., Tonelli, M., Topor-Madry, R., Topouzis, F., Nx, J. A., Traebert, J., Tran, B. X., Truelsen, T., Trujillo, U., Tura, A. K., Tuzcu, E. M., Uchendu, U. S., Ukwaja, K. N., Undurraga, E. A., Uthman, O. A., Van Dingenen, R., van Donkelaar, A., Vasankari, T., Vasconcelos, A. M., Venketasubramanian, N., Vidavalur, R., Vijayakumar, L., Villalpando, S., Violante, F. S., Vlassov, V. V., Wagner, J. A., Wagner, G. R., Wallin, M. T., Wang, L., Watkins, D. A., Weichenthal, S., Weiderpass, E., Weintraub, R. G., Werdecker, A., Westerman, R., White, R. A., Wijeratne, T., Wilkinson, J. D., Williams, H. C., Wiysonge, C. S., Woldeyohannes, S. M., Wolfe, C. D., Won, S., Wong, J. Q., Woolf, A. D., Xavier, D., Xiao, Q., Xu, G., Yakob, B., Yalew, A. Z., Yan, L. L., Yano, Y., Yaseri, M., Ye, P., Yebyo, H. G., Yip, P., Yirsaw, B. D., Yonemoto, N., Yonga, G., Younis, M. Z., Yu, S., Zaidi, Z., Zaki, M. E., Zannad, F., Zavala, D. E., Zeeb, H., Zeleke, B. M., Zhang, H., Zodpey, S., Zonies, D., Zuhlke, L. J., Vos, T., Lopez, A. D., Murray, C. J. 2016; 388 (10053): 1459-1544

Abstract

Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).Globally, life expectancy from birth increased from 617 years (95% uncertainty interval 614-619) in 1980 to 718 years (715-722) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 113 years (37-174), to 626 years (565-702). Total deaths increased by 41% (26-56) from 2005 to 2015, rising to 558 million (549 million to 566 million) in 2015, but age-standardised death rates fell by 170% (158-181) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 141% (126-160) to 398 million (392 million to 405 million) in 2015, whereas age-standardised rates decreased by 131% (119-143). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (421%, 391-446), malaria (431%, 347-518), neonatal preterm birth complications (298%, 248-349), and maternal disorders (291%, 193-371). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146000 deaths, 118000-183000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393000 deaths, 228000-532000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.Bill & Melinda Gates Foundation.

View details for Web of Science ID 000385285000007

View details for PubMedCentralID PMC5388903

The phosphatase calcineurin regulates pathological TDP-43 phosphorylation. Acta neuropathologica Liachko, N. F., Saxton, A. D., McMillan, P. J., Strovas, T. J., Currey, H. N., Taylor, L. M., Wheeler, J. M., Oblak, A. L., Ghetti, B., Montine, T. J., Keene, C. D., Raskind, M. A., Bird, T. D., Kraemer, B. C. 2016; 132 (4): 545-561

Abstract

Detergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90% of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date, several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together, these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences.

View details for DOI 10.1007/s00401-016-1600-y

View details for PubMedID 27473149

View details for PubMedCentralID PMC5026939

Association of Traumatic Brain Injury With Late-Life Neurodegenerative Conditions and Neuropathologic Findings. JAMA neurology Crane, P. K., Gibbons, L. E., Dams-O'Connor, K., Trittschuh, E., Leverenz, J. B., Keene, C. D., Sonnen, J., Montine, T. J., Bennett, D. A., Leurgans, S., Schneider, J. A., Larson, E. B. 2016; 73 (9): 1062-1069

Abstract

The late effects of traumatic brain injury (TBI) are of great interest, but studies characterizing these effects are limited.To determine whether TBI with loss of consciousness (LOC) is associated with an increased risk for clinical and neuropathologic findings of Alzheimer disease (AD), Parkinson disease (PD), and other dementias.This study analyzed data from the Religious Orders Study (ROS), Memory and Aging Project (MAP), and Adult Changes in Thought study (ACT). All ROS and MAP participants and a subset of ACT participants consent to autopsy. Studies performed annual (ROS and MAP) or biennial (ACT) cognitive and clinical testing to identify incident cases of dementia and AD. The 7130 participants included members of a Seattle-area health care delivery system (ACT), priests and nuns living in orders across the United States (ROS), and Chicago-area adults in retirement communities (MAP). Of these, 1589 underwent autopsy. Primary hypothesis was that TBI with LOC would be associated with increased risk for AD and neurofibrillary tangles. Data were accrued from 1994 to April 1, 2014.Self-reported TBI when the participant was free of dementia, categorized as no more than 1 vs more than 1 hour of LOC.Clinical outcomes included incident all-cause dementia, AD, and PD in all studies and incident mild cognitive impairment and progression of parkinsonian signs in ROS and MAP. Neuropathologic outcomes included neurofibrillary tangles, neuritic plaques, microinfarcts, cystic infarcts, Lewy bodies, and hippocampal sclerosis in all studies.Of 7130 participants (2879 [40.4%] men; overall mean [SD] age, 79.9 [6.9] years), 865 reported a history of TBI with LOC. In 45190 person-years of follow-up, 1537 incident cases of dementia and 117 of PD were identified. No association was found between TBI with LOC and incident dementia (ACT: HR for TBI with LOC 1 hour, 1.03; 95% CI, 0.83-1.27; HR for TBI with LOC >1 hour, 1.18; 95% CI, 0.77-1.78; ROS and MAP: HR for TBI with LOC 1 hour, 0.87; 95% CI, 0.58-1.29; HR for TBI with LOC >1 hour, 0.84; 95% CI, 0.44-1.57) or AD (findings similar to those for dementia). Associations were found for TBI with LOC and incident PD in ACT (HR for TBI with LOC >1 hour, 3.56; 95% CI, 1.52-8.28) and progression of parkinsonian signs in ROS and MAP (odds ratio [OR] for TBI with LOC 1 hour, 1.65; 95% CI, 1.23-2.21; OR for TBI with LOC >1 hour, 2.23; 95% CI, 1.16-4.29). Traumatic brain injury with LOC was associated with Lewy bodies (any Lewy body in ACT: RR for TBI with LOC >1 hour, 2.64; 95% CI, 1.40-4.99; Lewy bodies in substantia nigra and/or locus ceruleus in ACT: RR for TBI with LOC >1 hour, 3.30; 95% CI, 1.71-6.38; Lewy bodies in frontal or temporal cortex in ACT: RR for TBI with LOC >1 hour, 5.73; 95% CI, 2.18-15.0; ROS and MAP: RR for TBI with LOC 1 hour, 1.64; 95% CI, 1.00-2.70; pooled RR for TBI with LOC 1 hour, 1.59; 95% CI, 1.06-2.39) and microinfarcts (any cortical microinfarct in ROS and MAP: RR for TBI with LOC >1 hour, 2.12; 95% CI, 1.12-4.01; pooled RR for TBI with LOC >1 hour, 1.58; 95% CI, 1.06-2.35).Pooled clinical and neuropathologic data from 3 prospective cohort studies indicate that TBI with LOC is associated with risk for Lewy body accumulation, progression of parkinsonism, and PD, but not dementia, AD, neuritic plaques, or neurofibrillary tangles.

View details for DOI 10.1001/jamaneurol.2016.1948

View details for PubMedID 27400367

Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid- levels in brain. Journal of neurochemistry Henderson, B. W., Gentry, E. G., Rush, T., Troncoso, J. C., Thambisetty, M., Montine, T. J., Herskowitz, J. H. 2016; 138 (4): 525-531

Abstract

Alzheimer's disease (AD) is the leading cause of dementia and mitigating amyloid- (A) levels may serve as a rational therapeutic avenue to slow AD progression. Pharmacologic inhibition of the Rho-associated protein kinases (ROCK1 and ROCK2) is proposed to curb A levels, and mechanisms that underlie ROCK2's effects on A production are defined. How ROCK1 affects A generation remains a critical barrier. Here, we report that ROCK1 protein levels were elevated in mild cognitive impairment due to AD (MCI) and AD brains compared to controls. A42 oligomers marginally increased ROCK1 and ROCK2 protein levels in neurons but strongly induced phosphorylation of Lim kinase 1 (LIMK1), suggesting that A42 activates ROCKs. RNAi depletion of ROCK1 or ROCK2 suppressed endogenous A40 production in neurons, and A40 levels were reduced in brains of ROCK1 heterozygous knock-out mice compared to wild-type littermate controls. ROCK1 knockdown decreased amyloid precursor protein (APP), and treatment with bafilomycin accumulated APP levels in neurons depleted of ROCK1. These observations suggest that reduction of ROCK1 diminishes A levels by enhancing APP protein degradation. Collectively, these findings support the hypothesis that both ROCK1 and ROCK2 are therapeutic targets to combat A production in AD. Mitigating amyloid- (A) levels is a rational strategy for Alzheimer's disease (AD) treatment, however, therapeutic targets with clinically available drugs are lacking. We hypothesize that A accumulation in mild cognitive impairment because of AD (MCI) and AD activates the RhoA/ROCK pathway which in turn fuels production of A. Escalation of this cycle over the course of many years may contribute to the buildup of amyloid pathology in MCI and/or AD.

View details for DOI 10.1111/jnc.13688

View details for PubMedID 27246255

View details for PubMedCentralID PMC4980252

Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Annals of neurology Hoekstra, J. G., Hipp, M. J., Montine, T. J., Kennedy, S. R. 2016; 80 (2): 301-306

Abstract

Mitochondrial dysfunction and oxidative damage are commonly associated with early stage Alzheimer disease (AD). The accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been hypothesized to be a driver of these phenotypes, but the detection of increased mutation loads has been difficult due to a lack of sensitive methods. We used an ultrasensitive next generation sequencing technique to measure the mutation load of the entire mitochondrial genome. Here, we report a significant increase in the mtDNA mutation frequency in the hippocampus of early stage AD, with the cause of these mutations being consistent with replication errors and not oxidative damage. Ann Neurol 2016;80:301-306.

View details for DOI 10.1002/ana.24709

View details for PubMedID 27315116

View details for PubMedCentralID PMC4982791

Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition LANCET Murray, C. J., Barber, R. M., Foreman, K. J., Ozgoren, A. A., Abd-Allah, F., Abera, S. F., Aboyans, V., Abraham, J. P., Abubakar, I., Abu-Raddad, L. J., Abu-Rmeileh, N. M., Achoki, T., Ackerman, I. N., Ademi, Z., Adou, A. K., Adsuar, J. C., Afshin, A., Agardh, E. E., Alam, S. S., Alasfoor, D., Albittar, M. I., Alegretti, M. A., Alemu, Z. A., Alfonso-Cristancho, R., Alhabib, S., Ali, R., Alla, F., Allebeck, P., AlMazroa, M. A., Alsharif, U., Alvarez, E., Alvis-Guzman, N., Amare, A. T., Ameh, E. A., Amini, H., Ammar, W., Anderson, H. R., Anderson, B. O., Antonio, C. A., Anwari, P., Arnlov, J., Arsenijevic, V. S., Artaman, A., Asghar, R. J., Assadi, R., Atkins, L. S., Avila, M. A., Awuah, B., Bachman, V. F., Badawi, A., Bahit, M. C., Balakrishnan, K., Banerjee, A., Barker-Collo, S. L., Barquera, S., Barregard, L., Barrero, L. H., Basu, A., Basu, S., Basulaiman, M. O., Beardsley, J., Bedi, N., Beghi, E., Bekele, T., Bell, M. L., Benjet, C., Bennett, D. A., Bensenor, I. M., Benzian, H., Bernabe, E., Bertozzi-Villa, A., Beyene, T. J., Bhala, N., Bhalla, A., Bhutta, Z. A., Bienhoff, K., Bikbov, B., Biryukov, S., Blore, J. D., Blosser, C. D., Blyth, F. M., Bohensky, M. A., Bolliger, I. W., Basara, B. B., Bornstein, N. M., Bose, D., Boufous, S., Bourne, R. R., Boyers, L. N., Brainin, M., Brayne, C. E., Brazinova, A., Breitborde, N. J., Brenner, H., Briggs, A. D., Brooks, P. M., Brown, J. C., Brugha, T. S., Buchbinder, R., Buckle, G. C., Budke, C. M., Bulchis, A., Bulloch, A. G., Campos-Nonato, I. R., Carabin, H., Carapetis, J. R., Cardenas, R., Carpenter, D. O., Caso, V., Castaneda-Orjuela, C. A., Castro, R. E., Catala-Lopez, F., Cavalleri, F., Cavlin, A., Chadha, V. K., Chang, J., Charlson, F. J., Chen, H., Chen, W., Chiang, P. P., Chimed-Ochir, O., Chowdhury, R., Christensen, H., Christophi, C. A., Cirillo, M., Coates, M. M., Coffeng, L. E., Coggeshall, M. S., Colistro, V., Colquhoun, S. M., Cooke, G. S., Cooper, C., Cooper, L. T., Coppola, L. M., Cortinovis, M., Criqui, M. H., Crump, J. A., Cuevas-Nasu, L., Danawi, H., Dandona, L., Dandona, R., Dansereau, E., Dargan, P. I., Davey, G., Davis, A., Davitoiu, D. V., Dayama, A., De Leo, D., Degenhardt, L., Del Pozo-Cruz, B., Dellavalle, R. P., Deribe, K., Derrett, S., Des Jarlais, D. C., Dessalegn, M., Dharmaratne, S. D., Dherani, M. K., Diaz-Torne, C., Dicker, D., Ding, E. L., Dokova, K., Dorsey, E. R., Driscoll, T. R., Duan, L., Duber, H. C., Ebel, B. E., Edmond, K. M., Elshrek, Y. M., Endres, M., Ermakov, S. P., Erskine, H. E., Eshrati, B., Esteghamati, A., Estep, K., Faraon, E. J., Farzadfar, F., Fay, D. F., Feigin, V. L., Felson, D. T., Fereshtehnejad, S., Fernandes, J. G., Ferrari, A. J., Fitzmaurice, C., Flaxman, A. D., Fleming, T. D., Foigt, N., Forouzanfar, M. H., Fowkes, F. G., Paleo, U. F., Franklin, R. C., Fuerst, T., Gabbe, B., Gaffikin, L., Gankpe, F. G., Geleijnse, J. M., Gessner, B. D., Gething, P., Gibney, K. B., Giroud, M., Giussani, G., Gomez Dantes, H., Gona, P., Gonzalez-Medina, D., Gosselin, R. A., Gotay, C. C., Goto, A., Gouda, H. N., Graetz, N., Gugnani, H. C., Gupta, R., Gupta, R., Gutierrez, R. A., Haagsma, J., Hafezi-Nejad, N., Hagan, H., Halasa, Y. A., Hamadeh, R. R., Hamavid, H., Hammami, M., Hancock, J., Hankey, G. J., Hansen, G. M., Hao, Y., Harb, H. L., Maria Haro, J., Havmoeller, R., Hay, S. I., Hay, R. J., Heredia-Pi, I. B., Heuton, K. R., Heydarpour, P., Higashi, H., Hijar, M., Hoek, H. W., Hoffman, H. J., Hosgood, H. D., Hossain, M., Hotez, P. J., Hoy, D. G., Hsairi, M., Hu, G., Huang, C., Huang, J. J., Husseini, A., Huynh, C., Iannarone, M. L., Iburg, K. M., Innos, K., Inoue, M., Islami, F., Jacobsen, K. H., Jarvis, D. L., Jassal, S. K., Jee, S. H., Jeemon, P., Jensen, P. N., Jha, V., Jiang, G., Jiang, Y., Jonas, J. B., Juel, K., Kan, H., Karch, A., Karema, C. K., Karimkhani, C., Karthikeyan, G., Kassebaum, N. J., Kaul, A., Kawakami, N., Kazanjan, K., Kemp, A. H., Kengne, A. P., Keren, A., Khader, Y. S., Khalifa, S. E., Khan, E. A., Khan, G., Khang, Y., Kieling, C., Kim, D., Kim, S., Kim, Y., Kinfu, Y., Kinge, J. M., Kivipelto, M., Knibbs, L. D., Knudsen, A. K., Kokubo, Y., Kosen, S., Krishnaswami, S., Defo, B. K., Bicer, B. K., Kuipers, E. J., Kulkarni, C., Kulkarni, V. S., Kumar, G. A., Kyu, H. H., Lai, T., Lalloo, R., Lallukka, T., Lam, H., Lan, Q., Lansingh, V. C., Larsson, A., Lawrynowicz, A. E., Leasher, J. L., Leigh, J., Leung, R., Levitz, C. E., Li, B., Li, Y., Li, Y., Lim, S. S., Lind, M., Lipshultz, S. E., Liu, S., Liu, Y., Lloyd, B. K., Lofgren, K. T., Logroscino, G., Looker, K. J., Lortet-Tieulent, J., Lotufo, P. A., Lozano, R., Lucas, R. M., Lunevicius, R., Lyons, R. A., Ma, S., MacIntyre, M. F., Mackay, M. T., Majdan, M., Malekzadeh, R., Marcenes, W., Margolis, D. J., Margono, C., Marzan, M. B., Masci, J. R., Mashal, M. T., Matzopoulos, R., Mayosi, B. M., Mazorodze, T. T., McGill, N. W., McGrath, J. J., McKee, M., McLain, A., Meaney, P. A., Medina, C., Mehndiratta, M. M., Mekonnen, W., Melaku, Y. A., Meltzer, M., Memish, Z. A., Mensah, G. A., Meretoja, A., Mhimbira, F. A., Micha, R., Miller, T. R., Mills, E. J., Mitchell, P. B., Mock, C. N., Ibrahim, N. M., Mohammad, K. A., Mokdad, A. H., Mola, G. L., Monasta, L., Montanez Hernandez, J. C., Montico, M., Montine, T. J., Mooney, M. D., Moore, A. R., Moradi-Lakeh, M., Moran, A. E., Mori, R., Moschandreas, J., Moturi, W. N., Moyer, M. L., Mozaffarian, D., Msemburi, W. T., Mueller, U. O., Mukaigawara, M., Mullany, E. C., Murdoch, M. E., Murray, J., Murthy, K. S., Naghavi, M., Naheed, A., Naidoo, K. S., Naldi, L., Nand, D., Nangia, V., Narayan, K. M., Nejjari, C., Neupane, S. P., Newton, C. R., Ng, M., Ngalesoni, F. N., Nguyen, G., Nisar, M. I., Nolte, S., Norheim, O. F., Norman, R. E., Norrving, B., Nyakarahuka, L., Oh, I., Ohkubo, T., Ohno, S. L., Olusanya, B. O., Opio, J. N., Ortblad, K., Ortiz, A., Pain, A. W., Pandian, J. D., Panelo, C. I., Papachristou, C., Park, E., Park, J., Patten, S. B., Patton, G. C., Paul, V. K., Pavlin, B. I., Pearce, N., Pereira, D. M., Perez-Padilla, R., Perez-Ruiz, F., Perico, N., Pervaiz, A., Pesudovs, K., Peterson, C. B., Petzold, M., Phillips, M. R., Phillips, B. K., Phillips, D. E., Piel, F. B., Plass, D., Poenaru, D., Polinder, S., Pope, D., Popova, S., Poulton, R. G., Pourmalek, F., Prabhakaran, D., Prasad, N. M., Pullan, R. L., Qato, D. M., Quistberg, D. A., Rafay, A., Rahimi, K., Rahman, S. U., Raju, M., Rana, S. M., Razavi, H., Reddy, K. S., Refaat, A., Remuzzi, G., Resnikoff, S., Ribeiro, A. L., Richardson, L., Richardus, J. H., Roberts, D. A., Rojas-Rueda, D., Ronfani, L., Roth, G. A., Rothenbacher, D., Rothstein, D. H., Rowley, J. T., Roy, N., Ruhago, G. M., Saeedi, M. Y., Saha, S., Sahraian, M. A., Sampson, U. K., Sanabria, J. R., Sandar, L., Santos, I. S., Satpathy, M., Sawhney, M., Scarborough, P., Schneider, I. J., Schoettker, B., Schumacher, A. E., Schwebel, D. C., Scott, J. G., Seedat, S., Sepanlou, S. G., Serina, P. T., Servan-Mori, E. E., Shackelford, K. A., Shaheen, A., Shahraz, S., Levy, T. S., Shangguan, S., She, J., Sheikhbahaei, S., Shi, P., Shibuya, K., Shinohara, Y., Shiri, R., Shishani, K., Shiue, I., Shrime, M. G., Sigfusdottir, I. D., Silberberg, D. H., Simard, E. P., Sindi, S., Singh, A., Singh, J. A., Singh, L., Skirbekk, V., Slepak, E. L., Sliwa, K., Soneji, S., Soreide, K., Soshnikov, S., Sposato, L. A., Sreeramareddy, C. T., Stanaway, J. D., Stathopoulou, V., Stein, D. J., Stein, M. B., Steiner, C., Steiner, T. J., Stevens, A., Stewart, A., Stovner, L. J., Stroumpoulis, K., Sunguya, B. F., Swaminathan, S., Swaroop, M., Sykes, B. L., Tabb, K. M., Takahashi, K., Tandon, N., Tanne, D., Tanner, M., Tavakkoli, M., Taylor, H. R., Te Ao, B. J., Tediosi, F., Temesgen, A. M., Templin, T., ten Have, M., Tenkorang, E. Y., Terkawi, A. S., Thomson, B., Thorne-Lyman, A. L., Thrift, A. G., Thurston, G. D., Tillmann, T., Tonelli, M., Topouzis, F., Toyoshima, H., Traebert, J., Tran, B. X., Trillini, M., Truelsen, T., Tsilimbaris, M., Tuzcu, E. M., Uchendu, U. S., Ukwaja, K. N., Undurraga, E. A., Uzun, S. B., Van Brakel, W. H., van de Vijver, S., van Gool, C. H., van Os, J., Vasankari, T. J., Venketasubramanian, N., Violante, F. S., Vlassov, V. V., Vollset, S. E., Wagner, G. R., Wagner, J., Waller, S. G., Wan, X., Wang, H., Wang, J., Wang, L., Warouw, T. S., Weichenthal, S., Weiderpass, E., Weintraub, R. G., Wang Wenzhi, W. Z., Werdecker, A., Westerman, R., Whiteford, H. A., Wilkinson, J. D., Williams, T. N., Wolfe, C. D., Wolock, T. M., Woolf, A. D., Wulf, S., Wurtz, B., Xu, G., Yan, L. L., Yano, Y., Ye, P., Yentur, G. K., Yip, P., Yonemoto, N., Yoon, S., Younis, M. Z., Yu, C., Zaki, M. E., Zhao, Y., Zheng, Y., Zonies, D., Zou, X., Salomon, J. A., Lopez, A. D., Vos, T. 2015; 386 (10009): 2145-2191

Abstract

Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).Globally, life expectancy from birth increased from 617 years (95% uncertainty interval 614-619) in 1980 to 718 years (715-722) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 113 years (37-174), to 626 years (565-702). Total deaths increased by 41% (26-56) from 2005 to 2015, rising to 558 million (549 million to 566 million) in 2015, but age-standardised death rates fell by 170% (158-181) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 141% (126-160) to 398 million (392 million to 405 million) in 2015, whereas age-standardised rates decreased by 131% (119-143). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (421%, 391-446), malaria (431%, 347-518), neonatal preterm birth complications (298%, 248-349), and maternal disorders (291%, 193-371). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146000 deaths, 118000-183000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393000 deaths, 228000-532000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.Bill & Melinda Gates Foundation.

View details for DOI 10.1016/S0140-6736(15)61340-X

View details for Web of Science ID 000365992600030

View details for PubMedCentralID PMC5388903

Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 LANCET Vos, T., Barber, R. M., Bell, B., Bertozzi-Villa, A., Biryukov, S., Bolliger, I., Charlson, F., Davis, A., Degenhardt, L., Dicker, D., Duan, L., Erskine, H., Feigin, V. L., Ferrari, A. J., Fitzmaurice, C., Fleming, T., Graetz, N., Guinovart, C., Haagsma, J., Hansen, G. M., Hanson, S. W., Heuton, K. R., Higashi, H., Kassebaum, N., Kyu, H., Laurie, E., Liang, X., Lofgren, K., Lozano, R., MacIntyre, M. F., Moradi-Lakeh, M., Naghavi, M., Nguyen, G., Odell, S., Ortblad, K., Roberts, D. A., Roth, G. A., Sandar, L., Serina, P. T., Stanaway, J. D., Steiner, C., Thomas, B., Vollset, S. E., Whiteford, H., Wolock, T. M., Ye, P., Zhou, M., Avila, M. A., Aasvang, G. M., Abbafati, C., Ozgoren, A. A., Abd-Allah, F., Aziz, M. I., Abera, S. F., Aboyans, V., Abraham, J. P., Abraham, B., Abubakar, I., Abu-Raddad, L. J., Abu-Rmeileh, N. M., Aburto, T. C., Achoki, T., Ackerman, I. N., Adelekan, A., Ademi, Z., Adou, A. K., Adsuar, J. C., Arnlov, J., Agardh, E. E., Al Khabouri, M. J., Alam, S. S., Alasfoor, D., Albittar, M. I., Alegretti, M. A., Aleman, A. V., Alemu, Z. A., Alfonso-Cristancho, R., Alhabib, S., Ali, R., Alla, F., Allebeck, P., Allen, P. J., AlMazroa, M. A., Alsharif, U., Alvarez, E., Alvis-Guzman, N., Ameli, O., Amini, H., Ammar, W., Anderson, B. O., Anderson, H. R., Antonio, C. A., Anwari, P., Apfel, H., Arsenijevic, V. S., Artaman, A., Asghar, R. J., Assadi, R., Atkins, L. S., Atkinson, C., Badawi, A., Bahit, M. C., Bakfalouni, T., Balakrishnan, K., Balalla, S., Banerjee, A., Barker-Collo, S. L., Barquera, S., Barregard, L., Barrero, L. H., Basu, S., Basu, A., Baxter, A., Beardsley, J., Bedi, N., Beghi, E., Bekele, T., Bell, M. L., Benjet, C., Bennett, D. A., Bensenor, I. M., Benzian, H., Bernabe, E., Beyene, T. J., Bhala, N., Bhalla, A., Bhutta, Z. Q., Bienhoff, K., Bikbov, B., Bin Abdulhak, A., Blore, J. D., Blyth, F. M., Bohensky, M. A., Basara, B. B., Borges, G., Bornstein, N. M., Bose, D., Boufous, S., Bourne, R. R., Boyers, L. N., Brainin, M., Brauer, M., Brayne, C. E., Brazinova, A., Breitborde, N. J., Brenner, H., Briggs, A. D., Brooks, P. M., Brown, J., Brugha, T. S., Buchbinder, R., Buckle, G. C., Bukhman, G., Bulloch, A. G., Burch, M., Burnett, R., Cardenas, R., Cabral, N. L., Nonato, I. R., Campuzano, J. C., Carapetis, J. R., Carpenter, D. O., Caso, V., Castaneda-Orjuela, C. A., Catala-Lopez, F., Chadha, V. K., Chang, J., Chen, H., Chen, W., Chiang, P. P., Chimed-Ochir, O., Chowdhury, R., Christensen, H., Christophi, C. A., Chugh, S. S., Cirillo, M., Coggeshall, M., Cohen, A., Colistro, V., Colquhoun, S. M., Contreras, A. G., Cooper, L. T., Cooper, C., Cooperrider, K., Coresh, J., Cortinovis, M., Criqui, M. H., Crump, J. A., Cuevas-Nasu, L., Dandona, R., Dandona, L., Dansereau, E., Dantes, H. G., Dargan, P. I., Davey, G., Davitoiu, D. V., Dayama, A., De la Cruz-Gongora, V., de la Vega, S. F., De Leo, D., Del Pozo-Cruz, B., Dellavalle, R. P., Deribe, K., Derrett, S., Des Jarlais, D. C., Dessalegn, M., de Veber, G. A., Dharmaratne, S. D., Diaz-Torne, C., Ding, E. L., Dokova, K., Dorsey, E. R., Driscoll, T. R., Duber, H., Durrani, A. M., Edmond, K. M., Ellenbogen, R. G., Endres, M., Ermakov, S. P., Eshrati, B., Esteghamati, A., Estep, K., Fahimi, S., Farzadfar, F., Fay, D. F., Felson, D. T., Fereshtehnejad, S., Fernandes, J. G., Ferri, C. P., Flaxman, A., Foigt, N., Foreman, K. J., Fowkes, F. G., Franklin, R. C., Furst, T., Futran, N. D., Gabbe, B. J., Gankpe, F. G., Garcia-Guerra, F. A., Geleijnse, J. M., Gessner, B. D., Gibney, K. B., Gillum, R. F., Ginawi, I. A., Giroud, M., Giussani, G., Goenka, S., Goginashvili, K., Gona, P., de Cosio, T. G., Gosselin, R. A., Gotay, C. C., Goto, A., Gouda, H. N., Guerrant, R. L., Gugnani, H. C., Gunnell, D., Gupta, R., Gupta, R., Gutierrez, R. A., Hafezi-Nejad, N., Hagan, H., Halasa, Y., Hamadeh, R. R., Hamavid, H., Hammami, M., Hankey, G. J., Hao, Y., Harb, H. L., Haro, J. M., Havmoeller, R., Hay, R. J., Hay, S., Hedayati, M. T., Pi, I. B., Heydarpour, P., Hijar, M., Hoek, H. W., Hoffman, H. J., Hornberger, J. C., Hosgood, H. D., Hossain, M., Hotez, P. J., Hoy, D. G., Hsairi, M., Hu, H., Hu, G., Huang, J. J., Huang, C., Huiart, L., Husseini, A., Iannarone, M., Iburg, K. M., Innos, K., Inoue, M., Jacobsen, K. H., Jassal, S. K., Jeemon, P., Jensen, P. N., Jha, V., Jiang, G., Jiang, Y., Jonas, J. B., Joseph, J., Juel, K., Kan, H., Karch, A., Karimkhani, C., Karthikeyan, G., Katz, R., Kaul, A., Kawakami, N., Kazi, D. S., Kemp, A. H., Kengne, A. P., Khader, Y. S., Khalifa, S. E., Khan, E. A., Khan, G., Khang, Y., Khonelidze, I., Kieling, C., Kim, D., Kim, S., Kimokoti, R. W., Kinfu, Y., Kinge, J. M., Kissela, B. M., Kivipelto, M., Knibbs, L., Knudsen, A. K., Kokubo, Y., Kosen, S., Kramer, A., Kravchenko, M., Krishnamurthi, R. V., Krishnaswami, S., Defo, B. K., Bicer, B. K., Kuipers, E. J., Kulkarni, V. S., Kumar, K., Kumar, G. A., Kwan, G. F., Lai, T., Lalloo, R., Lam, H., Lan, Q., Lansingh, V. C., Larson, H., Larsson, A., Lawrynowicz, A. E., Leasher, J. L., Lee, J., Leigh, J., Leung, R., Levi, M., Li, B., Li, Y., Li, Y., Liang, J., Lim, S., Lin, H., Lind, M., Lindsay, M. P., Lipshultz, S. E., Liu, S., Lloyd, B. K., Ohno, S. L., Logroscino, G., Looker, K. J., Lopez, A. D., Lopez-Olmedo, N., Lortet-Tieulent, J., Lotufo, P. A., Low, N., Lucas, R. M., Lunevicius, R., Lyons, R. A., Ma, J., Ma, S., Mackay, M. T., Majdan, M., Malekzadeh, R., Mapoma, C. C., Marcenes, W., March, L. M., Margono, C., Marks, G. B., Marzan, M. B., Masci, J. R., Mason-Jones, A. J., Matzopoulos, R. G., Mayosi, B. M., Mazorodze, T. T., McGill, N. W., McGrath, J. J., McKee, M., McLain, A., McMahon, B. J., Meaney, P. A., Mehndiratta, M. M., Mejia-Rodriguez, F., Mekonnen, W., Melaku, Y. A., Meltzer, M., Memish, Z. A., Mensah, G., Meretoja, A., Mhimbira, F. A., Micha, R., Miller, T. R., Mills, E. J., Mitchell, P. B., Mock, C. N., Moffitt, T. E., Ibrahim, N. M., Mohammad, K. A., Mokdad, A. H., Mola, G. L., Monasta, L., Montico, M., Montine, T. J., Moore, A. R., Moran, A. E., Morawska, L., Mori, R., Moschandreas, J., Moturi, W. N., Moyer, M., Mozaffarian, D., Mueller, U. O., Mukaigawara, M., Murdoch, M. E., Murray, J., Murthy, K. S., Naghavi, P., Nahas, Z., Naheed, A., Naidoo, K. S., Naldi, L., Nand, D., Nangia, V., Narayan, K. M., Nash, D., Nejjari, C., Neupane, S. P., Newman, L. M., Newton, C. R., Ng, M., Ngalesoni, F. N., Nhung, N. T., Nisar, M. I., Nolte, S., Norheim, O. F., Norman, R. E., Norrving, B., Nyakarahuka, L., Oh, I. H., Ohkubo, T., Omer, S. B., Opio, J. N., Ortiz, A., Pandian, J. D., Panelo, C. I., Papachristou, C., Park, E., Parry, C. D., Caicedo, A. J., Patten, S. B., Paul, V. K., Pavlin, B. I., Pearce, N., Pedraza, L. S., Pellegrini, C. A., Pereira, D. M., Perez-Ruiz, F. P., Perico, N., Pervaiz, A., Pesudovs, K., Peterson, C. B., Petzold, M., Phillips, M. R., Phillips, D., Phillips, B., Piel, F. B., Plass, D., Poenaru, D., Polanczyk, G. V., Polinder, S., Pope, C. A., Popova, S., Poulton, R. G., Pourmalek, F., Prabhakaran, D., Prasad, N. M., Qato, D., Quistberg, D. A., Rafay, A., Rahimi, K., Rahimi-Movaghar, V., Rahman, S. u., Raju, M., Rakovac, I., Rana, S. M., Razavi, H., Refaat, A., Rehm, J., Remuzzi, G., Resnikoff, S., Ribeiro, A. L., Riccio, P. M., Richardson, L., Richardus, J. H., Riederer, A. M., Robinson, M., Roca, A., Rodriguez, A., Rojas-Rueda, D., Ronfani, L., Rothenbacher, D., Roy, N., Ruhago, G. M., Sabin, N., Sacco, R. L., Ksoreide, K., Saha, S., Sahathevan, R., Sahraian, M. A., Sampson, U., Sanabria, J. R., Sanchez-Riera, L., Santos, I. S., Satpathy, M., Saunders, J. E., Sawhney, M., Saylan, M. I., Scarborough, P., Schoettker, B., Schneider, I. J., Schwebel, D. C., Scott, J. G., Seedat, S., Sepanlou, S. G., Serdar, B., Servan-Mori, E. E., Shackelford, K., Shaheen, A., Shahraz, S., Levy, T. S., Shangguan, S., She, J., Sheikhbahaei, S., Shepard, D. S., Shi, P., Shibuya, K., Shinohara, Y., Shiri, R., Shishani, K., Shiue, I., Shrime, M. G., Sigfusdottir, I. D., Silberberg, D. H., Simard, E. P., Sindi, S., Singh, J. A., Singh, L., Skirbekk, V., Sliwa, K., Soljak, M., Soneji, S., Soshnikov, S. S., Speyer, P., Sposato, L. A., Sreeramareddy, C. T., Stoeckl, H., Stathopoulou, V. K., Steckling, N., Stein, M. B., Stein, D. J., Steiner, T. J., Stewart, A., Stork, E., Stovner, L. J., Stroumpoulis, K., Sturua, L., Sunguya, B. F., Swaroop, M., Sykes, B. L., Tabb, K. M., Takahashi, K., Tan, F., Tandon, N., Tanne, D., Tanner, M., Tavakkoli, M., Taylor, H. R., Ao, B. J., Temesgen, A. M., ten Have, M., Tenkorang, E. Y., Terkawi, A. S., Theadom, A. M., Thomas, E., Thorne-Lyman, A. L., Thrift, A. G., Tleyjeh, I. M., Tonelli, M., Topouzis, F., Towbin, J. A., Toyoshima, H., Traebert, J., Tran, B. X., Trasande, L., Trillini, M., Truelsen, T., Trujillo, U., Tsilimbaris, M., Tuzcu, E. M., Ukwaja, K. N., Undurraga, E. A., Uzun, S. B., Van Brakel, W. H., de Vijver, S. v., Van Dingenen, R., van Gool, C. H., Varakin, Y. Y., Vasankari, T. J., Vavilala, M. S., Veerman, L. J., Velasquez-Melendez, G., Venketasubramanian, N., Vijayakumar, L., Villalpando, S., Violante, F. S., Vlassov, V. V., Waller, S., Wallin, M. T., Wan, X., Wang, L., Wang, J., Wang, Y., Warouw, T. S., Weichenthal, S., Weiderpass, E., Weintraub, R. G., Werdecker, A., Wessells, K. R., Westerman, R., Wilkinson, J. D., Williams, H. C., Williams, T. N., Woldeyohannes, S. M., Wolfe, C. D., Wong, J. Q., Wong, H., Woolf, A. D., Wright, J. L., Wurtz, B., Xu, G., Yang, G., Yano, Y., Yenesew, M. A., Yentur, G. K., Yip, P., Yonemoto, N., Yoon, S., Younis, M., Yu, C., Kim, K. Y., Zaki, M. E., Zhang, Y., Zhao, Z., Zhao, Y., Zhu, J., Zonies, D., Zunt, J. R., Salomon, J. A., Murray, C. J. 2015; 386 (9995): 743-800

Abstract

Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refinements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries.Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 24 billion and 16 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 5376 million in 1990 to 7648 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 11487 per 1000 people to 11031 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 211% in 1990 to 312% in 2013.Ageing of the world's population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to non-fatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.Bill & Melinda Gates Foundation.

View details for DOI 10.1016/S0140-6736(15)60692-4

View details for Web of Science ID 000360287900025

View details for PubMedCentralID PMC4561509

Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 LANCET Naghavi, M., Wang, H., Lozano, R., Davis, A., Liang, X., Zhou, M., Vollset, S. E., Ozgoren, A. A., Abdalla, S., Abd-Allah, F., Aziz, M. I., Abera, S. F., Aboyans, V., Abraham, B., Abraham, J. P., Abuabara, K. E., Abubakar, I., Abu-Raddad, L. J., Abu-Rmeileh, N. M., Achoki, T., Adelekan, A., Ademi, Z. N., Adofo, K., Adou, A. K., Adsuar, J. C., Aernlov, J., Agardh, E. E., Akena, D., Al Khabouri, M. J., Alasfoor, D., Albittar, M., Alegretti, M. A., Aleman, A. V., Alemu, Z. A., Alfonso-Cristancho, R., Alhabib, S., Ali, M. K., Ali, R., Alla, F., Al Lami, F., Allebeck, P., AlMazroa, M. A., Salman, R. A., Alsharif, U., Alvarez, E., Alviz-Guzman, N., Amankwaa, A. A., Amare, A. T., Ameli, O., Amini, H., Ammar, W., Anderson, H. R., Anderson, B. O., Antonio, C. A., Anwari, P., Apfel, H., Cunningham, S. A., Arsenijevic, V. S., Al Artaman, Asad, M. M., Asghar, R. J., Assadi, R., Atkins, L. S., Atkinson, C., Badawi, A., Bahit, M. C., Bakfalouni, T., Balakrishnan, K., Balalla, S., Banerjee, A., Barber, R. M., Barker-Collo, S. L., Barquera, S., Barregard, L., Barrero, L. H., Barrientos-Gutierrez, T., Basu, A., Basu, S., Basulaiman, M. O., Beardsley, J., Bedi, N., Beghi, E., Bekele, T., Bell, M. L., Benjet, C., Bennett, D. A., Bensenor, I. M., Benzian, H., Bertozzi-Villa, A., Beyene, T. J., Bhala, N., Bhalla, A., Bhutta, Z. A., Bikbov, B., Bin Abdulhak, A., Biryukov, S., Blore, J. D., Blyth, F. M., Bohensky, M. A., Borges, G., Bose, D., Boufous, S., Bourne, R. R., Boyers, L. N., Brainin, M., Brauer, M., Brayne, C. E., Brazinova, A., Breitborde, N., Brenner, H., Briggs, A. D., Brown, J. C., Brugha, T. S., Buckle, G. C., Bui, L. N., Bukhman, G., Burch, M., Nonato, I. R., Carabin, H., Cardenas, R., Carapetis, J., Carpenter, D. O., Caso, V., Castaneda-Orjuela, C. A., Castro, R. E., Catala-Lopez, F., Cavalleri, F., Chang, J., Charlson, F. C., Che, X., Chen, H., Chen, Y., Chen, J. S., Chen, Z., Chiang, P. P., Chimed-Ochir, O., Chowdhury, R., Christensen, H., Christophi, C. A., Chuang, T., Chugh, S. S., Cirillo, M., Coates, M. M., Coffeng, L. E., Coggeshall, M. S., Cohen, A., Colistro, V., Colquhoun, S. M., Colomar, M., Cooper, L. T., Cooper, C., Coppola, L. M., Cortinovis, M., Courville, K., Cowie, B. C., Criqui, M. H., Crump, J. A., Cuevas-Nasu, L., Leite, I. d., Dabhadkar, K. C., Dandona, L., Dandona, R., Dansereau, E., Dargan, P. I., Dayama, A., De la Cruz-Gongora, V., de la Vega, S. F., De Leo, D., Degenhardt, L., Del Pozo-Cruz, B., Dellavalle, R. P., Deribe, K., Jarlais, D. C., Dessalegn, M., deVeber, G. A., Dharmaratne, S. D., Dherani, M., Diaz-Ortega, J., Diaz-Torne, C., Dicker, D., Ding, E. L., Dokova, K., Dorsey, E. R., Driscoll, T. R., Duan, L., Duber, H. C., Durrani, A. M., Ebel, B. E., Edmond, K. M., Ellenbogen, R. G., Elshrek, Y., Ermakov, S. P., Erskine, H. E., Eshrati, B., Esteghamati, A., Estep, K., Fuerst, T., Fahimi, S., Fahrion, A. S., Faraon, E. J., Farzadfar, F., Fay, D. F., Feigl, A. B., Feigin, V. L., Felicio, M. M., Fereshtehnejad, S., Fernandes, J. G., Ferrari, A. J., Fleming, T. D., Foigt, N., Foreman, K., Forouzanfar, M. H., Fowkes, F. G., Fra Paleo, U., Franklin, R. C., Futran, N. D., Gaffikin, L., Gambashidze, K., Gankpe, F. G., Garcia-Guerra, F. A., Garcia, A. C., Geleijnse, J. M., Gessner, B. D., Gibney, K. B., Gillum, R. F., Gilmour, S., Abdelmageem, I., Ginawi, M., Giroud, M., Glaser, E. L., Goenka, S., Dantes, H. G., Gona, P., Gonzalez-Medina, D., Guinovart, C., Gupta, R., Gupta, R., Gosselin, R. A., Gotay, C. C., Goto, A., Gowda, H. N., Graetz, N., Greenwell, K. F., Gugnani, H. C., Gunnell, D., Gutierrez, R. A., Haagsma, J., Hafezi-Nejad, N., Hagan, H., Hagstromer, M., Halasa, Y. A., Hamadeh, R. R., Hamavid, H., Hammami, M., Hancock, J., Hankey, G. J., Hansen, G. M., Harb, H. L., Harewood, H., Haro, J. M., Havmoeller, R., Hay, R. J., Hay, S. I., Hedayati, M. T., Pi, I. B., Heuton, K. R., Heydarpour, P., Higashi, H., Hijar, M., Hoek, H. W., Hoffman, H. J., Hornberger, J. C., Hosgood, H. D., Hossain, M., Hotez, P. J., Hoy, D. G., Hsairi, M., Hu, G., Huang, J. J., Huffman, M. D., Hughes, A. J., Husseini, A., Huynh, C., Iannarone, M., Iburg, K. M., Idrisov, B. T., Ikeda, N., Innos, K., Inoue, M., Islami, F., Ismayilova, S., Jacobsen, K. H., Jassal, S., Jayaraman, S. P., Jensen, P. N., Jha, V., Jiang, G., Jiang, Y., Jonas, J. B., Joseph, J., Juel, K., Kabagambe, E. K., Kan, H., Karch, A., Karimkhani, C., Karthikeyan, G., Kassebaum, N., Kaul, A., Kawakami, N., Kazanjan, K., Kazi, D. S., Kemp, A. H., Kengne, A. P., Keren, A., Kereselidze, M., Khader, Y. S., Khalifa, S. E., Khan, E. A., Khan, G., Khang, Y., Kieling, C., Kinfu, Y., Kinge, J. M., Kim, D., Kim, S., Kivipelto, M., Knibbs, L., Knudsen, A. K., Kokubo, Y., Kosen, S., Kotagal, M., Kravchenko, M. A., Krishnaswami, S., Krueger, H., Defo, B. K., Kuipers, E. J., Bicer, B. K., Kulkarni, C., Kulkarni, V. S., Kumar, K., Kumar, R. B., Kwan, G. F., Kyu, H., Lai, T., Balaji, A. L., Lalloo, R., Lallukka, T., Lam, H., Lan, Q., Lansingh, V. C., Larson, H. J., Larsson, A., Lavados, P. M., Lawrynowicz, A. E., Leasher, J. L., Lee, J., Leigh, J., Leinsalu, M., Leung, R., Levitz, C., Li, B., Li, Y., Li, Y., Liddell, C., Lim, S. S., de Lima, G. M., Lind, M. L., Lipshultz, S. E., Liu, S., Liu, Y., Lloyd, B. K., Lofgren, K. T., Logroscino, G., London, S. J., Lortet-Tieulent, J., Lotufo, P. A., Lucas, R. M., Lunevicius, R., Lyons, R. A., Ma, S., Machado, V. M., MacIntyre, M. F., Mackay, M. T., Maclachlan, J. H., Magis-Rodriguez, C., Mahdi, A. A., Majdan, M., Malekzadeh, R., Mangalam, S., Mapoma, C. C., Marape, M., Marcenes, W., Margono, C., Marks, G. B., Marzan, M. B., Masci, J. R., Mashal, M. T., Masiye, F., Mason-Jones, A. J., Matzopolous, R., Mayosi, B. M., Mazorodze, T. T., McGrath, J. J., Mckay, A. C., McKee, M., McLain, A., Meaney, P. A., Mehndiratta, M. M., Mejia-Rodriguez, F., Melaku, Y. A., Meltzer, M., Memish, Z. A., Mendoza, W., Mensah, G. A., Meretoja, A., Mhimbira, F. A., Miller, T. R., Mills, E. J., Misganaw, A., Mishra, S. K., Mock, C. N., Moffitt, T. E., Ibrahim, N. M., Mohammad, K. A., Mokdad, A. H., Mola, G. L., Monasta, L., Monis, J. d., Hernandez, J. C., Montico, M., Montine, T. J., Mooney, M. D., Moore, A. R., Moradi-Lakeh, M., Moran, A. E., Mori, R., Moschandreas, J., Moturi, W. N., Moyer, M. L., Mozaffarian, D., Mueller, U. O., Mukaigawara, M., Mullany, E. C., Murray, J., Mustapha, A., Naghavi, P., Naheed, A., Naidoo, K. S., Naldi, L., Nand, D., Nangia, V., Narayan, K. M., Nash, D., Nasher, J., Nejjari, C., Nelson, R. G., Neuhouser, M., Neupane, S. P., Newcomb, P. A., Newman, L., Newton, C. R., Ng, M., Ngalesoni, F. N., Nguyen, G., Nhung Thi Trang Nguyen, N. T., Nisar, M. I., Nolte, S., Norheim, O. F., Norman, R. E., Norrving, B., Nyakarahuka, L., Odell, S., O'Donnell, M., Ohkubo, T., Ohno, S. L., Olusanya, B. O., Omer, S. B., Opio, J. N., Orisakwe, O. E., Ortblad, K. F., Ortiz, A., Otayza, M. L., Pain, A. W., Pandian, J. D., Panelo, C. I., Panniyammakal, J., Papachristou, C., Paternina Caicedo, A. J., Patten, S. B., Patton, G. C., Paul, V. K., Pavlin, B., Pearce, N., Pellegrini, C. A., Pereira, D. M., Peresson, S. C., Perez-Padilla, R., Perez-Ruiz, F. P., Perico, N., Pervaiz, A., Pesudovs, K., Peterson, C. B., Petzold, M., Phillips, B. K., Phillips, D. E., Phillips, M. R., Plass, D., Piel, F. B., Poenaru, D., Polinder, S., Popova, S., Poulton, R. G., Pourmalek, F., Prabhakaran, D., Qato, D., Quezada, A. D., Quistberg, D. A., Rabito, F., Rafay, A., Rahimi, K., Rahimi-Movaghar, V., Rahman, S. u., Raju, M., Rakovac, I., Rana, S. M., Refaat, A., Remuzzi, G., Ribeiro, A. L., Ricci, S., Riccio, P. M., Richardson, L., Richardus, J. H., Roberts, B., Roberts, D. A., Robinson, M., Roca, A., Rodriguez, A., Rojas-Rueda, D., Ronfani, L., Room, R., Roth, G. A., Rothenbacher, D., Rothstein, D. H., Rowley, J. T., Roy, N., Ruhago, G. M., Rushton, L., Sambandam, S., Soreide, K., Saeedi, M. Y., Saha, S., Sahathevan, R., Sahraian, M. A., Sahle, B. W., Salomon, J. A., Salvo, D., Samonte, G. M., Sampson, U., Sanabria, J. R., Sandar, L., Santos, I. S., Satpathy, M., Sawhney, M., Saylan, M., Scarborough, P., Schoettker, B., Schmidt, J. C., Schneider, I. J., Schumacher, A. E., Schwebel, D. C., Scott, J. G., Sepanlou, S. G., Servan-Mori, E. E., Shackelford, K., Shaheen, A., Shahraz, S., Shakh-Nazarova, M., Shangguan, S., She, J., Sheikhbahaei, S., Shepard, D. S., Shibuya, K., Shinohara, Y., Shishani, K., Shiue, I., Shivakoti, R., Shrime, M. G., Sigfusdottir, I. D., Silberberg, D. H., Silva, A. P., Simard, E. P., Sindi, S., Singh, J. A., Singh, L., Sioson, E., Skirbekk, V., Sliwa, K., So, S., Soljak, M., Soneji, S., Soshnikov, S. S., Sposato, L. A., Sreeramareddy, C. T., Stanaway, J. R., Stathopoulou, V. K., Steenland, K., Stein, C., Steiner, C., Stevens, A., Stoeckl, H., Straif, K., Stroumpoulis, K., Sturua, L., Sunguya, B. F., Swaminathan, S., Swaroop, M., Sykes, B. L., Tabb, K. M., Takahashi, K., Talongwa, R. T., Tan, F., Tanne, D., Tanner, M., Tavakkoli, M., Ao, B. T., Teixeira, C. M., Templin, T., Tenkorang, E. Y., Terkawi, A. S., Thomas, B. A., Thorne-Lyman, A. L., Thrift, A. G., Thurston, G. D., Tillmann, T., Tirschwell, D. L., Tleyjeh, I. M., Tonelli, M., Topouzis, F., Towbin, J. A., Toyoshima, H., Traebert, J., Tran, B. X., Truelsen, T., Trujillo, U., Trillini, M., Dimbuene, Z. T., Tsilimbaris, M., Tuzcu, E. M., Ubeda, C., Uchendu, U. S., Ukwaja, K. N., Undurraga, E. A., Vallely, A. J., van de Vijver, S., van Gool, C. H., Varakin, Y. Y., Vasankari, T. J., Vasconcelos, A. M., Vavilala, M. S., Venketasubramanian, N., Vijayakumar, L., Villalpando, S., Violante, F. S., Vlassov, V. V., Wagner, G. R., Waller, S. G., Wang, J., Wang, L., Wang, X., Wang, Y., Warouw, T. S., Weichenthal, S., Weiderpass, E., Weintraub, R. G., Wenzhi, W., Werdecker, A., Wessells, K. R., Westerman, R., Whiteford, H. A., Wilkinson, J. D., Williams, T. N., Woldeyohannes, S. M., Wolfe, C. D., Wolock, T. M., Woolf, A. D., Wong, J. Q., Wright, J. L., Wulf, S., Wurtz, B., Xu, G., Yang, Y. C., Yano, Y., Yatsuya, H., Yip, P., Yonemoto, N., Yoon, S., Younis, M., Yu, C., Jin, K. Y., Zaki, M. E., Zamakhshary, M. F., Zeeb, H., Zhang, Y., Zhao, Y., Zheng, Y., Zhu, J., Zhu, S., Zonies, D., Zou, X. N., Zunt, J. R., Vos, T., Lopez, A. D., Murray, C. J. 2015; 385 (9963): 117-171

Abstract

Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries.We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions.Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100,000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions.For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.Bill & Melinda Gates Foundation.

View details for DOI 10.1016/S0140-6736(14)61682-2

View details for Web of Science ID 000347715900024

View details for PubMedCentralID PMC4340604

Low Plasma Leptin in Cognitively Impaired ADNI Subjects: Gender Differences and Diagnostic and Therapeutic Potential CURRENT ALZHEIMER RESEARCH Johnston, J. M., Hu, W. T., Fardo, D. W., Greco, S. J., Perry, G., Montine, T. J., Trojanowski, J. Q., Shaw, L. M., Ashford, J. W., Tezapsidis, N. 2014; 11 (2): 165-174

Abstract

Analysis of data derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) program showed plasma leptin levels in individuals with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) to be lower than those of subjects with normal cognition (NC). Approximately 70% of both men and women with MCI have plasma leptin levels lower than the median values of NC. Additionally, half of these subjects carry at least one apolipoprotein-E4 (APOE-4) allele. A subgroup of participants also had cerebrospinal fluid (CSF) leptin measured. Plasma leptin typically reflected the levels of leptin in CSF in all groups (Control/MCI/AD) in both genders. The data suggest that plasma leptin deficiency provides an indication of potential CNS leptin deficiency, further supporting the exploration of plasma leptin as a diagnostic marker for MCI or AD. The important question is whether leptin deficiency plays a role in the causation of AD and/or its progression. If this is the case, individuals with early AD or MCI with low plasma leptin may benefit from leptin replacement therapy. Thus, these data indicate that trials of leptin in low leptin MCI/early-stage AD patients should be conducted to test the hypothesis.

View details for DOI 10.2174/1567205010666131212114156

View details for Web of Science ID 000333195900008

View details for PubMedID 24359504

The future of blood-based biomarkers for Alzheimer's disease ALZHEIMERS & DEMENTIA Henriksen, K., O'Bryant, S. E., Hamper, H., Trojanowski, J. Q., Montine, T. J., Jeromin, A., Blennow, K., Lonneborg, A., Wyss-Coray, T., Soares, H., Bazenet, C., Sjogren, M., Hu, W., Lovestone, S., Karsdal, M. A., Weiner, M. W. 2014; 10 (1): 115-131

Abstract

Treatment of Alzheimer's disease (AD) is significantly hampered by the lack of easily accessible biomarkers that can detect disease presence and predict disease risk reliably. Fluid biomarkers of AD currently provide indications of disease stage; however, they are not robust predictors of disease progression or treatment response, and most are measured in cerebrospinal fluid, which limits their applicability. With these aspects in mind, the aim of this article is to underscore the concerted efforts of the Blood-Based Biomarker Interest Group, an international working group of experts in the field. The points addressed include: (1) the major challenges in the development of blood-based biomarkers of AD, including patient heterogeneity, inclusion of the "right" control population, and the blood-brain barrier; (2) the need for a clear definition of the purpose of the individual markers (e.g., prognostic, diagnostic, or monitoring therapeutic efficacy); (3) a critical evaluation of the ongoing biomarker approaches; and (4) highlighting the need for standardization of preanalytical variables and analytical methodologies used by the field.

View details for DOI 10.1016/j.jalz.2013.01.013

View details for Web of Science ID 000329559300015

View details for PubMedID 23850333

Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease ANNALS OF NEUROLOGY Shi, J., Wang, Q., Johansson, J. U., Liang, X., Woodling, N. S., Priyam, P., Loui, T. M., Merchant, M., Breyer, R. M., Montine, T. J., Andreasson, K. 2012; 72 (5): 788-798

Abstract

There is significant evidence for a central role of inflammation in the development of Alzheimer disease (AD). Epidemiological studies indicate that chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD in healthy aging populations. As NSAIDs inhibit the enzymatic activity of the inflammatory cyclooxygenases COX-1 and COX-2, these findings suggest that downstream prostaglandin signaling pathways function in the preclinical development of AD. Here, we investigate the function of prostaglandin E(2) (PGE(2) ) signaling through its EP3 receptor in the neuroinflammatory response to A peptide.The function of PGE(2) signaling through its EP3 receptor was examined in vivo in a model of subacute neuroinflammation induced by administration of A(42) peptides. Our findings were then confirmed in young adult APPSwe-PS1E9 transgenic mice.Deletion of the PGE(2) EP3 receptor in a model of A(42) peptide-induced neuroinflammation reduced proinflammatory gene expression, cytokine production, and oxidative stress. In the APPSwe-PS1E9 model of familial AD, deletion of the EP3 receptor blocked induction of proinflammatory gene and protein expression and lipid peroxidation. In addition, levels of A peptides were significantly decreased, as were -secretase and C-terminal fragment levels, suggesting that generation of A peptides may be increased as a result of proinflammatory EP3 signaling. Finally, deletion of EP3 receptor significantly reversed the decline in presynaptic proteins seen in APPSwe-PS1E9 mice.Our findings identify the PGE(2) EP3 receptor as a novel proinflammatory, proamyloidogenic, and synaptotoxic signaling pathway, and suggest a role for COX-PGE(2) -EP3 signaling in the development of AD.

View details for DOI 10.1002/ana.23677

View details for Web of Science ID 000312940300017

View details for PubMedID 22915243

View details for PubMedCentralID PMC3509238

Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans AMERICAN JOURNAL OF HUMAN GENETICS Tao, H., Manak, J. R., Sowers, L., Mei, X., Kiyonari, H., Abe, T., Dandaleh, N. S., Yang, T., Wu, S., Chen, S., Fox, M. H., Gurnett, C., Montine, T., Bird, T., Shaffer, L. G., Rosenfeld, J. A., McConne, J., Madan-Khetarpal, S., Berry-Kravis, E., Griesbach, H., Saneto, R. P., Scott, M. P., Antic, D., Reed, J., Boland, R., Ehaideb, S. N., El-Shanti, H., Mahajan, V. B., Ferguson, P. J., Axelrod, J. D., Lehesjoki, A., Fritzsch, B., Slusarski, D. C., Wemmie, J., Ueno, N., Bassuk, A. G. 2011; 88 (2): 138-149

Abstract

Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.

View details for DOI 10.1016/j.ajhg.2010.12.012

View details for Web of Science ID 000287684100002

View details for PubMedID 21276947

View details for PubMedCentralID PMC3035715

The Prostaglandin E-2 E-Prostanoid 4 Receptor Exerts Anti-Inflammatory Effects in Brain Innate Immunity JOURNAL OF IMMUNOLOGY Shi, J., Johansson, J., Woodling, N. S., Wang, Q., Montine, T. J., Andreasson, K. 2010; 184 (12): 7207-7218

Abstract

Peripheral inflammation leads to immune responses in brain characterized by microglial activation, elaboration of proinflammatory cytokines and reactive oxygen species, and secondary neuronal injury. The inducible cyclooxygenase (COX), COX-2, mediates a significant component of this response in brain via downstream proinflammatory PG signaling. In this study, we investigated the function of the PGE2 E-prostanoid (EP) 4 receptor in the CNS innate immune response to the bacterial endotoxin LPS. We report that PGE2 EP4 signaling mediates an anti-inflammatory effect in brain by blocking LPS-induced proinflammatory gene expression in mice. This was associated in cultured murine microglial cells with decreased Akt and I-kappaB kinase phosphorylation and decreased nuclear translocation of p65 and p50 NF-kappaB subunits. In vivo, conditional deletion of EP4 in macrophages and microglia increased lipid peroxidation and proinflammatory gene expression in brain and in isolated adult microglia following peripheral LPS administration. Conversely, EP4 selective agonist decreased LPS-induced proinflammatory gene expression in hippocampus and in isolated adult microglia. In plasma, EP4 agonist significantly reduced levels of proinflammatory cytokines and chemokines, indicating that peripheral EP4 activation protects the brain from systemic inflammation. The innate immune response is an important component of disease progression in a number of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In addition, recent studies demonstrated adverse vascular effects with chronic administration of COX-2 inhibitors, indicating that specific PG signaling pathways may be protective in vascular function. This study supports an analogous and beneficial effect of PGE2 EP4 receptor signaling in suppressing brain inflammation.

View details for DOI 10.4049/jimmunol.0903487

View details for Web of Science ID 000278516700071

View details for PubMedID 20483760

View details for PubMedCentralID PMC3103215

Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor EXPERIMENTAL NEUROLOGY Savonenko, A., Munoz, P., Melnikova, T., Wang, Q., Liang, X., Breyer, R. M., Montine, T. J., Kirkwood, A., Andreasson, K. 2009; 217 (1): 63-73

Abstract

Cyclooxygenase-2 (COX-2) is a neuronal immediate early gene that is regulated by N-methyl d aspartate (NMDA) receptor activity. COX-2 enzymatic activity catalyzes the first committed step in prostaglandin synthesis. Recent studies demonstrate an emerging role for the downstream PGE(2) EP2 receptor in diverse models of activity-dependent synaptic plasticity and a significant function in models of neurological disease including cerebral ischemia, Familial Alzheimer's disease, and Familial amyotrophic lateral sclerosis. Little is known, however, about the normal function of the EP2 receptor in behavior and cognition. Here we report that deletion of the EP2 receptor leads to significant cognitive deficits in standard tests of fear and social memory. EP2-/- mice also demonstrated impaired prepulse inhibition (PPI) and heightened anxiety, but normal startle reactivity, exploratory behavior, and spatial reference memory. This complex behavioral phenotype of EP2-/- mice was associated with a deficit in long-term depression (LTD) in hippocampus. Our findings suggest that PGE(2) signaling via the EP2 receptors plays an important role in cognitive and emotional behaviors that recapitulate some aspects of human psychopathology related to schizophrenia.

View details for DOI 10.1016/j.expneurol.2009.01.016

View details for Web of Science ID 000265859000009

View details for PubMedID 19416671

View details for PubMedCentralID PMC2720138

The prostaglandin E-2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis ANNALS OF NEUROLOGY Liang, X., Wang, Q., Shi, J., Lokteva, L., Breyer, R. M., Montine, T. J., Andreasson, K. 2008; 64 (3): 304-314

Abstract

Inflammation has emerged as an important factor in disease progression in human and transgenic models of amyotrophic lateral sclerosis (ALS). Recent studies demonstrate that the prostaglandin E(2) EP2 receptor is a major regulator of inflammatory oxidative injury in innate immunity. We tested whether EP2 signaling participated in disease pathogenesis in the G93A superoxide dismutase (SOD) model of familial ALS.We examined the phenotype of G93A SOD mice lacking the EP2 receptor and performed immunocytochemistry, quantitative reverse transcriptase polymerase chain reaction, and Western analyses to determine the mechanism of EP2 toxicity in this model.EP2 receptor is significantly induced in G93A SOD mice in astrocytes and microglia in parallel with increases in expression of proinflammatory enzymes and lipid peroxidation. In human ALS, EP2 receptor immunoreactivity was upregulated in astrocytes in ventral spinal cord. In aging G93A SOD mice, genetic deletion of the prostaglandin E(2)EP2 receptor improved motor strength and extended survival. Deletion of the EP2 receptor in G93A SOD mice resulted in significant reductions in levels of proinflammatory effectors, including cyclooxygenase-1, cyclooxygenase-2, inducible nitric oxide synthase, and components of the NADPH oxidase complex. In alternate models of inflammation, including the lipopolysaccharide model of innate immunity and the APPSwe-PS1DeltaE9 model of amyloidosis, deletion of EP2 also reduced expression of proinflammatory genes.These data suggest that prostaglandin E(2) signaling via the EP2 receptor functions in the mutant SOD model and more broadly in inflammatory neurodegeneration to regulate expression of a cassette of proinflammatory genes. Inhibition of EP2 signaling may represent a novel strategy to downregulate the inflammatory response in neurodegenerative disease.

View details for DOI 10.1002/ana.21437

View details for Web of Science ID 000259681700013

View details for PubMedID 18825663

View details for PubMedCentralID PMC2766522